answersLogoWhite

0


Best Answer

yes

User Avatar

Wiki User

9y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Does every rational number have an additive inverse and why?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Is a additive inverse of any rational number a negative number?

The additive inverse of EVERY positive rational number is a negative number.


Does every rational number have an additive inverse?

Yes.


Why does every rational number have a additive inverse?

The rational numbers form an algebraic structure with respect to addition and this structure is called a group. And it is the property of a group that every element in it has an additive inverse.


Why does every rational number have an additive inverse?

It is a fundamental requirement of algebraic structures called groups.


What is the aditive inverse property?

For every number, a,there exists a number called the additive inverse, -a, such that a + -a = 0.


How does every rational number have an additive inverse?

By definition, every rational number x can be expressed as a ratio p/q where p and q are integers and q is not zero. Consider -p/q. Then by the properties of integers, -p is an integer and is the additive inverse of p. Therefore p + (-p) = 0Then p/q + (-p/q) = [p + (-p)] /q = 0/q.Also, -p/q is a ratio of two integers, with q non-zero and so -p/q is also a rational number. That is, -p/q is the additive inverse of x, expressed as a ratio.


Does every integer has an additive inverse?

The additive inverse states that a number added to its opposite will equal zero. A + (-A) = 0. The "opposite" number here is the "negative" of the number. For any number n, the additive inverse is (-1)n. So therefore yes.


Does every natural number have an additive inverse?

Yes. Just put a minus sign in front of it. Note that except for the zero, the additive inverse is no longer a natural number.


Does every integer have an additive inverse?

Yes.


When the additive inverse of a number equal to the absolute value of the number?

One example would be a Galois Field size 4 (ie GF(4)). Here, the elements are {0,1,2,3} and every element is its own additive inverse.


What is the additive inverse of the complex number 8 plus 3i?

To form the additive inverse, negate all parts of the complex number → 8 + 3i → -8 - 3i The sum of a number and its additive inverse is 0: (8 + 3i) + (-8 - 3i) = (8 + -8) + (3 + -3)i = (8 - 8) + (3 - 3)i = 0 + 0i = 0.


What is a number added to its additive inverse will always have a sum of zero?

It is a tautological description of one of the basic properties of numbers used in the branch of mathematics called Analysis: Property 2: there exists an additive identity, called 0; for every number n: n + 0 = 0 + n = n. Property 3: there exists an additive inverse, of every number n denoted by (-n) such that n + (-n) = (-n) + n = 0 (the additive identity).