answersLogoWhite

0

By definition, every rational number x can be expressed as a ratio p/q where p and q are integers and q is not zero. Consider -p/q. Then by the properties of integers, -p is an integer and is the additive inverse of p. Therefore p + (-p) = 0

Then p/q + (-p/q) = [p + (-p)] /q = 0/q.


Also, -p/q is a ratio of two integers, with q non-zero and so -p/q is also a rational number. That is, -p/q is the additive inverse of x, expressed as a ratio.


User Avatar

Wiki User

7y ago

Still curious? Ask our experts.

Chat with our AI personalities

MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
ReneRene
Change my mind. I dare you.
Chat with Rene
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: How does every rational number have an additive inverse?
Write your answer...
Submit
Still have questions?
magnify glass
imp