No, but the ratio of each term in the Fibonacci sequence to its predecessor converges to the Golden Ratio.
Chat with our AI personalities
The golden ratio is approximately 1.618: 1. This ratio is commonly found in nature and architecture. Stock traders often look for this ratio in patterns on stock charts. One way to compute this ratio is to compare any adjacent Fibonacci numbers. For this reason stock traders often refer to this type of analysis using the term Fibonacci, as in "Fibonacci retracements".
The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa, known as Fibonacci. His 1202 book Liber Abaci introduced the sequence to Western European mathematics, although the sequence had been described earlier as Virahankanumbers in Indian mathematics.
They will always follow some Fibonacci sequence. If P and Q are any two numbers, then they belong to the Fibonacci sequence with the first two numbers as P and (Q-P).
There are several who discovered the significance of this ratio (see related link post). Euclid (around 300 BC) noted the ratio, but it looks like it was referred to as 'Golden' by Martin Ohm in 1835.
It's important because it is found (or appears to be) in so many areas of life, most notably in nature, and most importantly in mathematics. The Fibonacci sequence and the concept of fractals (like the infinitely divisible golden rectangle) are great examples of this. Ancient Egyptian and Greek architects built many of their structures with this ratio in mind. Philosophers see this ratio as having an important significance, since it occurs in nature so often. A lot of people believe that this formula, known as the golden ratio or phi (φ) pops up in everyday life. The truth is that it does not actually appear in the places it is said to. Many claims of its occurrence are false.