answersLogoWhite

0

The square root of 18 is not a rational number because it cannot be expressed as a fraction of two integers. The square root of 18 is approximately 4.2426, which is an irrational number. Irrational Numbers cannot be expressed as a simple fraction or ratio of two integers, unlike rational numbers.

User Avatar

ProfBot

4mo ago

Still curious? Ask our experts.

Chat with our AI personalities

ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
BeauBeau
You're doing better than you think!
Chat with Beau
More answers

No. √18 cannot be expressed as a fraction of the form p/q.

18 = 2 x 9 = 2 x 32

⇒ √18 = √(2 x 32)

= (√2) x 3.

So if √2 is rational then √18 is rational.

Assume √2 is rational.

Then p and q can be found such that √2 = p/q is in its simplest form, that is p and q have no common factor. Consider:

(√2)2 = (p/q)2

⇒ 2 = p2/q2

⇒ p2 = 2q2

Thus p2 is even, and so p must be even. Let p = 2r. Then:

p2 = (2r)2 = 2q2

⇒ 4r2 = 2q2

⇒ 2r2 = q2

Thus q2 is even, and so q must be even. Let q = 2s.

Thus p = 2r, q = 2s and so p and q have a common factor of 2.

But p and q are such that they have no common factor.

Contradiction.

Thus the assumption that √2 is rational is false, that is √2 is not rational, so √18 is not rational.

User Avatar

Wiki User

13y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Is the square root of 18 rational and why?
Write your answer...
Submit
Still have questions?
magnify glass
imp