The conjugate of a complex number can be found by multiplying the imaginary part by -1, then adding the "real" part back. (-2i) * -1 = 2i, so the conjugation is 7+2i
0.6-2i?
Multiply the numerator and denominator by the complex conjugate of the denominator ... [ root(2) minus i ]. This process is called 'rationalizing the denominator'.
When dividing complex numbers you must:Write the problem in fractional formRationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator.You must remember that a complex number times its conjugate will give a real number.a complex number 2+2i. the conjugate to this is 2-i1. Multiply both together gives a real number.(2+2i)(2-2i) = 4 -4i + 4i + (-4i2) (and as i2 = -1) = 8To divide a complex number by a real number simply divide the real parts by the divisor.(8+4i)/2 = (4+2i)To divide a real number by a complex number.1. make a fraction of the expression 8/(2+2i)2. multiply by 1. express 1 as a fraction of the divisor's conjunction. 8/(2+2i)*(2-2i)/(2-2i)3. multiply numerator by numerator and denominator by denominator.(16-16i)/84. and simplify 2-2i
this is a very good question. lets solve (2+3i)/(4-2i). we want to make 4-2i real by multiplying it by the conjugate, or 4+2i (4-2i)(4+2i)=16-8i+8i+4=20, now we have (2+3i)/20 0r 1/10 + 3i/20 notice that -2i times 2i = -4i^2 =-4 times -1 = 4
6+2i
7 + 2i
It is 3 minus 2i
5
The conjugate of a complex number can be found by multiplying the imaginary part by -1, then adding the "real" part back. (-2i) * -1 = 2i, so the conjugation is 7+2i
8
2i+6
0.6-2i?
Multiply the numerator and denominator by the complex conjugate of the denominator ... [ root(2) minus i ]. This process is called 'rationalizing the denominator'.
-8i
Not necessarily, take for example the equation x^2=5-12i. Then, 3-2i satisfies the equation. However, 3+2i does not because (3+2i)^2 = 5+12i.
(-2 + 3i) + (-1 - 2i) = -2 + 3i - 1 - 2i = -2 - 1 + 3i - 2i = -3 + i