answersLogoWhite

0


Best Answer

A decimal expansion means to write out the base 10 digits of a number.

Because Irrational Numbers do not have a closed form, the decimal expansion will always be an approximation. Consider the irrational number pi, which has the following decimal expansion:

3.14159265...

Of course there are more digits to pi than that, which is denoted by the "...". It is sadly impossible to list ALL of the digits of an irrational numbers, since if there were a finite number of digits, you could express it as a fraction, which would not be irrational.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

➡️
See all cards
3.82
3055 Reviews

Add your answer:

Earn +20 pts
Q: What is the decimal expansion of an irrational number?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

decimal expansion of irrational number is non terminating and?

The decimal expansion of an irrational number is non terminating and non recurring​


What is the decimal expansion of an irrational no. is?

It is the decimal approximation to the value of the irrational number.


What is the difference between the decimal expansion in irrational and rational numbers?

Decimals that terminate or repeat in some fashion are rational, while decimals that expand forever are irrational.


Is the decimal expansion of an irrational number is finite?

No. It must be infinite AND non-recurring.


A decimal number is an irrational number?

A decimal number can be rational or irrational.


Is the square root of pi a rational or irrational number?

Pi, and the square root of pi, belong to a category known as transcendental numbers, which means that not only do they have an infinite decimal expansion (the numbers following the decimal go on forever) but the decimal expansion follows no pattern and is unpredictable. Irrational numbers also have an infinite decimal expansion, but not necessarily an unpredictable one.


Why does irrational numbers don't stop?

Because if they stopped they could be expressed as a ratio. Suppose the decimal expansion of an irrational stopped after x digit AFTER the decimal point. Now consider the number n, which is the original number, left and right of the decimal, but without the decimal point. This is the nummerator of your ratio. The denominator is 1 followed by x zeros. It is easy to show that this ratio repesents the decimal expansion of the number


How doen you estimate an irrational number?

An irrational number has a never-ending decimal expansion. To estimate it's value, you'd just state the expansion to some number of digits. Ex: sqrt(2) is approximately 1.4142135623730950488 pi is approximately 3.14159265358979323846


Is a number with an unending decimal expansion irrational?

No. If the decimal expansion falls into a repeating pattern (however long) then the number is rational. For example, 0.33... is the rational number 1/3. or 0.04142857142857... where the pattern 142857 continues forever is the rational number 29/700.


Is pi a recurring decimal a terminating decimal or an irrational number?

Pi is an irrational number


How can you tell if a decimal is an irrational number?

When a decimal can't be expressed as a fraction then it is an irrational number.


What are the difference between decimal in rational and decimal in irrational?

A decimal rational number can be expressed as a fraction A decimal irrational number can not be expressed as a fraction