10b
Chat with our AI personalities
The GCF is b.
The GCF is b.
The GCF is a2b.
Here is a proof. Let a and b be any two real numbers. Consider the number x defined as x = ab + (-a)(b) + (-a)(-b). We can write this out differently as x = ab + (-a)[ (b) + (-b) ] Then, by factoring out -a , we find that x= ab + (-a)(0) = ab + 0 = ab. Also, x = [ a + (-a) ]b + (-a)(-b) And by factoring out b, we find that x=0 * b + (-a)(-b) = 0 + (-a)(-b) = (-a)(-b). Therefore x = ab and x = (-a)(-b) Then, by the transitivity of equality, we have ab = (-a)(-b).
In order to successfully factor you should follow these steps: 1.) Take out the GCF (ALWAYS DO THIS FIRST) 2.) Diff of Perfect Squares a^2-b^2=(a+b)(a-b) 3.) Diff/Sum of Cubes a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 4.) Key Number 5.) Grouping