Yes, y = loga(x) means the same as x=ay.
If y is an exponential function of x then x is a logarithmic function of y - so to change from an exponential function to a logarithmic function, change the subject of the function from one variable to the other.
Exponential and logarithmic functions are inverses of each other.
An exponential function can be is of the form f(x) = a*(b^x). Some examples are f1(x) = 3*(10^x), or f2(x) = e^(-2*x). Note that the latter still fits the format, with b = e^(-2). The inverse is the logarithmic function. So for y = f1(x) = 3*(10^x), reverse the x & y, and solve for y:x = 3*(10^y)log(x) = log(3*(10^y)) = log(3) + log(10^y) = log(3) + y*log(10) = y*1 + log(3)y = log(x) - log(3) = log(x/3)The second function: y = e^(-2*x), the inverse is: x = e^(-2*y).ln(x) = ln(e^(-2*y)) = -2*y*ln(e) = -2*y*1y = -ln(x)/2 = ln(x^(-1/2))See related link for an example graph.
Yes.
No. The inverse of an exponential function is a logarithmic function.
No, an function only contains a certain amount of vertices; leaving a logarithmic function to NOT be the inverse of an exponential function.
Logarithmic Function
Yes, y = loga(x) means the same as x=ay.
The exponential function, in the case of the natural exponential is f(x) = ex, where e is approximately 2.71828. The logarithmic function is the inverse of the exponential function. If we're talking about the natural logarithm (LN), then y = LN(x), is the same as sayinig x = ey.
Logarithmic equation
Apex: false A logarithmic function is not the same as an exponential function, but they are closely related. Logarithmic functions are the inverses of their respective exponential functions. For the function y=ln(x), its inverse is x=ey For the function y=log3(x), its inverse is x=3y For the function y=4x, its inverse is x=log4(y) For the function y=ln(x-2), its inverse is x=ey+2 By using the properties of logarithms, especially the fact that a number raised to a logarithm of base itself equals the argument of the logarithm: aloga(b)=b you can see that an exponential function with x as the independent variable of the form y=f(x) can be transformed into a function with y as the independent variable, x=f(y), by making it a logarithmic function. For a generalization: y=ax transforms to x=loga(y) and vice-versa Graphically, the logarithmic function is the corresponding exponential function reflected by the line y = x.
If y is an exponential function of x then x is a logarithmic function of y - so to change from an exponential function to a logarithmic function, change the subject of the function from one variable to the other.
The inverse of a logarithmic function is an exponential function. So to find the "inverse" of the log function, you use the universal power key, unless you're finding the inverse of a natural log, then you use the e^x key.
output
input
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.