Yes, y = loga(x) means the same as x=ay.
Chat with our AI personalities
Yes.
If y is an exponential function of x then x is a logarithmic function of y - so to change from an exponential function to a logarithmic function, change the subject of the function from one variable to the other.
Exponential and logarithmic functions are inverses of each other.
An exponential function can be is of the form f(x) = a*(b^x). Some examples are f1(x) = 3*(10^x), or f2(x) = e^(-2*x). Note that the latter still fits the format, with b = e^(-2). The inverse is the logarithmic function. So for y = f1(x) = 3*(10^x), reverse the x & y, and solve for y:x = 3*(10^y)log(x) = log(3*(10^y)) = log(3) + log(10^y) = log(3) + y*log(10) = y*1 + log(3)y = log(x) - log(3) = log(x/3)The second function: y = e^(-2*x), the inverse is: x = e^(-2*y).ln(x) = ln(e^(-2*y)) = -2*y*ln(e) = -2*y*1y = -ln(x)/2 = ln(x^(-1/2))See related link for an example graph.
Yes.