Same as any other function - but in the case of a definite integral, you can take advantage of the periodicity. For example, assuming that a certain function has a period of pi, and the value of the definite integral from zero to pi is 2, then the integral from zero to 2 x pi is 4.
If the values of the function are all positive, then the integral IS the area under the curve.
Consider the integral of sin x over the interval from 0 to 2pi. In this interval the value of sin x rises from 0 to 1 then falls through 0 to -1 and then rises again to 0. In other words the part of the sin x function between 0 and pi is 'above' the axis and the part between pi and 2pi is 'below' the axis. The value of this integral is zero because although the areas enclosed by the parts of the function between 0 and pi and pi and 2pi are the same the integral of the latter part is negative. The point I am trying to make is that a definite integral gives the area between a function and the horizontal axis but areas below the axis are negative. The integral of sin x over the interval from 0 to pi is 2. The integral of six x over the interval from pi to 2pi is -2.
We say function F is an anti derivative, or indefinite integral of f if F' = f. Also, if f has an anti-derivative and is integrable on interval [a, b], then the definite integral of f from a to b is equal to F(b) - F(a) Thirdly, Let F(x) be the definite integral of integrable function f from a to x for all x in [a, b] of f, then F is an anti-derivative of f on [a,b] The definition of indefinite integral as anti-derivative, and the relation of definite integral with anti-derivative, we can conclude that integration and differentiation can be considered as two opposite operations.
If df(x)/dx = g(x), then integral [from a to b] g(x) dx = f(b)-f(a). In plain English: the definite integral can be calculated by finding the antiderivative, evaluating it at the endpoints, and subtracting.
Divide by the sum of the primitive function of the percentage, accounting for a negative definite integral.
Application of definitApplication of definite Integral in the real life
The definite integral of a function: y = f(x) from x = a to x = b is equal to the area between the function curve and the 'x' axis from x = a to 'x' = b.
An indefinite integral is a version of an integral that, unlike a definite integral, returns an expression instead of a number. The general form of a definite integral is: ∫ba f(x) dx. The general form of an indefinite integral is: ∫ f(x) dx. An example of a definite integral is: ∫20 x2 dx. An example of an indefinite integral is: ∫ x2 dx In the definite case, the answer is 23/3 - 03/3 = 8/3. In the indefinite case, the answer is x3/3 + C, where C is an arbitrary constant.
gemetrically the definite integral gives the area under the curve of the integrand. explain the corresponding interpretation for a line integral.
For it to be a definite integral, you would need to specify a range. We can however give you the indefinite integral. The easiest way to do this is to think of it not as a fraction, but as a negative exponent: 1/x2 = x-2 It then becomes quite easy to integrate, as we can say in general: ∫(axn) dx = ax(n + 1) / (n + 1) + C In this case then, we have: ∫(x-2) dx = -x-1 + C, or -1/x + C
Same as any other function - but in the case of a definite integral, you can take advantage of the periodicity. For example, assuming that a certain function has a period of pi, and the value of the definite integral from zero to pi is 2, then the integral from zero to 2 x pi is 4.
What are the Applications of definite integrals in the real life?
If the values of the function are all positive, then the integral IS the area under the curve.
"integral" is primarily an adjective, but in calculus it is usually a noun, as in "the definite integral of a function."
Both kinds of integrals are essentially calculations of areas under curves. In a definite integral the surface whose area is to be calculated is planar. In a line integral the surface whose area to be calculated might occupy two or more dimensions. You might be interested in the animated diagrams in the wikipedia article for the line integral.
It is a way to approximate a definite integral using trapezoids.