The length of an arc equals he angle (in radians) times the radius. Divide the length by the radius, and that gives you the ange. Measure out the angle on a protractor and draw the length of the radius at the begining and end of the angle. Then draw theportion of the circle with its center at the location ofthe angle and extending out to the radius.
The integral from 0 to 2 pi of your constant value r will equal the circumference. This will be equal to 2*pi*r. This can be derived because of the following: Arc length = integral from a to b of sqrt(r^2-(dr/dtheta)^2) dtheta. By substituting the equation r = a constant c, dr/dtheta will equal 0, a will equal 0, and b will equal 2pi (the radians in a circle). By substitution, this becomes the integral from 0 to 2 pi of sqrt(c^2 + 0)dtheta, which leads us back to the original formula.
Find the volume of the rectangular solid whose length is 3, width is 7x, and height is y. Be sure to include units.
O, of course.
Divide the vector by it's length (magnitude).
An arc length of 120 degrees is 1/3 of the circumference of a circle
The length of the arc of ABC is 22pi. You can get this answer by completing this equation 330/360*24pi, which will give you 22pi.
47.10
It would be helpful to know " ... and 10" WHAT! Without that information the question cannot be answered.
find the arc length of minor arc 95 c= 18.84
5.23
a+ hhahah
If you have only the arc length then you cannot find the diameter.
The length of the arc is r*theta where r is the radius and theta the angle subtended by the arc at the centre of the circle. If you do not know theta (or cannot derive it), you cannot find the length of the arc.
length of arc/length of circumference = angle at centre/360 Rearranging the equation gives: length of arc = (angle at centre*length of circumference)/360
Find the circumference of the whole circle and then multiply that length by 95/360.
(arc length)/circumference=(measure of central angle)/(360 degrees) (arc length)/(2pi*4756)=(45 degrees)/(360 degrees) (arc length)/(9512pi)=45/360 (arc length)=(9512pi)/8 (arc length)=1189pi, which is approximately 3735.3536651