Easy. Same thing as the graph of f(x) = x^2 + 1 which have NO intercept.
The zeros of a polynomial represent the points at which the graph crosses (or touches) the x-axis.
B
Yes, over the real set of numbers. For example, the graph of y=x2+1 is a regular parabola with a vertex that is one unit above the origin. Because the vertex is the lowest point on the graph, and 1>0, there is no way for it to touch the x-axis.NOTE: But if we're considering imaginary numbers, the values "i" and "-i" would be the zeroes. I'm pretty sure that all polynomial functions have a number of zeroes equal to their degree if we include imaginary numbers.
I am not really sure what you are asking for, but any intercept on the x-axis has a y value of 0, so for any particular x value N, the intercept is at (N, 0).
35
Yes, the places where the graph of a polynomial intercepts the x-axis are zeros. The value of y at those places must be 0 for the polynomial to intersect the x axis.
The graph of a polynomial in X crosses the X-axis at x-intercepts known as the roots of the polynomial, the values of x that solve the equation.(polynomial in X) = 0 or otherwise y=0
The factors of a polynomial provide information about the roots or x-intercepts of the graph. Specifically, if a polynomial is factored into the form ( (x - r_1)(x - r_2)...(x - r_n) ), then the values ( r_1, r_2, ..., r_n ) are the points where the graph intersects the x-axis. Additionally, the multiplicity of each factor indicates the behavior of the graph at those intercepts, such as whether the graph crosses or touches the x-axis at those points.
The degree is equal to the maximum number of times the graph can cross a horizontal line.
When graphing polynomials, the x-intercepts of the curve are called the "roots" or "zeros" of the polynomial. These are the values of x for which the polynomial equals zero. Each root corresponds to a point where the graph crosses or touches the x-axis. The multiplicity of each root can affect the behavior of the graph at those intercepts.
To find the y-intercepts of a polynomial function, set the value of ( x ) to 0 and solve for ( y ). This involves substituting 0 into the polynomial equation and simplifying to find the corresponding ( y )-value. The y-intercept is the point where the graph of the function crosses the y-axis, represented as the coordinate (0, ( y )).
A parabola is a graph of a 2nd degree polynomial function. Two graph a parabola, you must factor the polynomial equation and solve for the roots and the vertex. If factoring doesn't work, use the quadratic equation.
To create a graph of a polynomial with three hills, you'll want a polynomial function that has three local maxima. A simple way to achieve this is to use a polynomial of degree 5 or higher, such as ( f(x) = x^5 - 15x^3 + 20x ), which has the necessary critical points. Use calculus to find the derivative, set it to zero, and solve for critical points to ensure there are three maxima. Finally, plot the function, ensuring it has the desired number of hills (peaks) between the x-intercepts.
An expression of polynomial degree 1 is a linear polynomial, typically written in the form ( ax + b ), where ( a ) and ( b ) are constants, and ( a \neq 0 ). The highest power of the variable ( x ) in this expression is 1, indicating that the graph of this polynomial is a straight line. Examples include ( 2x + 3 ) and ( -5x - 1 ).
Either graph the polynomial on graph paper manually or on a graphing calculator. If it is a "y=" polynomial, then the zeroes are the points or point where the polynomial touches the x-axis. If it is an "x=" polynomial, then the zeroes are the points or point where the polynomial touches the y-axis. If it touches neither, then it has no zeroes.
An even degree refers to a polynomial in which the highest exponent of the variable is an even number, such as 0, 2, 4, etc. For example, in the polynomial ( f(x) = x^4 + 2x^2 + 1 ), the highest degree is 4, making it an even-degree polynomial. Even-degree polynomials typically have a U-shaped graph and can have either no real roots or an even number of real roots.
The zeros of a polynomial represent the points at which the graph crosses (or touches) the x-axis.