The domain of a function pertains to all the x values
The range of a function pertains to all the y values
So domain and range do not get confused, this can be easily remembered by the order of the how the first letter of the word appears in the English alphabet.
d, domain, goes before r, range
x goes before y
domain = x values
range = y values
ill try to add to the previous writer.
previously, he wrote what the domain and range are for easier functions, but not how to determine them.
more generally, what the domain is, is what you can put into a function, which in simpler cases, is jus x. to find what you can put in, it helps to find what you cant put in for x, meaning, where is the graph of the function discontinuous. for example, if we look at the function f(x)=1/(1-x) if we put 1 in for x, then the denominator goes to zero and the function is discontinuous at that x value, therefore 1 will not be included in the domain, but everything else will be included since there are no other disconinuities. the domain will end up looking like this-
(-infinity,1), (1,infinity). now for the range, all you have to do is find what you can get out of the function from what you can put in, which can usually be done by putting the values you see for the domain in. putting negative infinity in for x in
f(x)=1/(1-x) you get zero and putting one in you get infinty. putting it together you get (-infinity,0), (0,infinity) for your range.
p.s. as i stated before, more generally, your domain is more so what you put into your function, so it is not always x, for example, in the case of a function of 2 variables such as f(x,y), what you can put in for both x and y will make up your domain, not just x, and y will most certainly not be your range, rather it will be the values of f(x,y).
The domain of a function determines what values of x you can plug into it whereas the range of a function determines the values that are your results. Therefore, look at the y-axis if you want to determine the range of a function and look at the x-axis if you want to determine the domain.
The diagram should be divided into to parts, the domain and the range. The domain is those things that you put into the possible function and the range is what comes out. Let's call a member of the domain x and of the range y. You can tell it is a function by tracing from each x to each y. If there is only one y for each x; there is only one arrow coming from each x, then it is function!
Some functions are only defined for certain values of the argument. For example, the the logarithm is defined for positive values. The inverse function is defined for all non-zero numbers. Sometimes the range determines the domain. If you are restricted to the real numbers, then the domain of the square root function must be the non-negative real numbers. In this way, there are definitional domains and ranges. You can then chose any subset of the definitional domain to be your domain, and the images of all the values in the domain will be the range.
Find the range of a function by substituting the highest domain possible and the lowest domain possible into the function. There, you will find the highest and lowest range. Then, you should check all the possible cases in the function where a number could be divided by 0 or a negative number could be square rooted. Remove these numbers from the range. A good way to check to see if you have the correct range is to graph the function (within the domain, of course).
true
A number does not have a range and domain, a function does.
The domain of a function determines what values of x you can plug into it whereas the range of a function determines the values that are your results. Therefore, look at the y-axis if you want to determine the range of a function and look at the x-axis if you want to determine the domain.
Find the maximum and minimum values that the function can take over all the values in the domain for the input. The range is the maximum minus the minimum.
Any function is a mapping from a domain to a codomain or range. Each element of the domain is mapped on to a unique element in the range by the function.
The domain and range are two different sets associated with a relationship or function. There is not a domain of a range.
The domain of a function is the set of values for which the function is defined.The range is the set of possible results which you can get for the function.
The domain of the function 1/2x is {0, 2, 4}. What is the range of the function?
The domain is a subset of the values for which the function is defined. The range is the set of values that the function takes as the argument of the function takes all the values in the domain.
Each element in the domain must be mapped to one and only one element in the range. If that condition is satisfied then the mapping (or relationship) is a function. Different elements in the domain can be mapped to the same element in the range. Some elements in the range may not have any elements from the domain mapped to them. These do not matter for the mapping to be a function. They do matter in terms of the function having an inverse, but that is an entirely different matter. As an illustration, consider the mapping from the domain [-10, 10] to the range [-10, 100] with the mapping defined by y = x2.
The diagram should be divided into to parts, the domain and the range. The domain is those things that you put into the possible function and the range is what comes out. Let's call a member of the domain x and of the range y. You can tell it is a function by tracing from each x to each y. If there is only one y for each x; there is only one arrow coming from each x, then it is function!
Domain is a set in which the given function is valid and range is the set of all the values the function takes
The domain and range of the composite function depend on both of the functions that make it up.