true
5
The domain of a function pertains to all the x values The range of a function pertains to all the y values So domain and range do not get confused, this can be easily remembered by the order of the how the first letter of the word appears in the English alphabet. d, domain, goes before r, range x goes before y domain = x values range = y values ill try to add to the previous writer. previously, he wrote what the domain and range are for easier functions, but not how to determine them. more generally, what the domain is, is what you can put into a function, which in simpler cases, is jus x. to find what you can put in, it helps to find what you cant put in for x, meaning, where is the graph of the function discontinuous. for example, if we look at the function f(x)=1/(1-x) if we put 1 in for x, then the denominator goes to zero and the function is discontinuous at that x value, therefore 1 will not be included in the domain, but everything else will be included since there are no other disconinuities. the domain will end up looking like this- (-infinity,1), (1,infinity). now for the range, all you have to do is find what you can get out of the function from what you can put in, which can usually be done by putting the values you see for the domain in. putting negative infinity in for x in f(x)=1/(1-x) you get zero and putting one in you get infinty. putting it together you get (-infinity,0), (0,infinity) for your range. p.s. as i stated before, more generally, your domain is more so what you put into your function, so it is not always x, for example, in the case of a function of 2 variables such as f(x,y), what you can put in for both x and y will make up your domain, not just x, and y will most certainly not be your range, rather it will be the values of f(x,y).
The range is infinite in both directions.
In the complex field, the domain and range are both the whole of the complex field.If restricted to real numbers, the domain is x >= 4 and y can be all real numbers >= 0 or all real numbers <= 0 [or some zigzagging pattern of that set].
Relational tuple calculus has its variables range over tuples, where domain relational calculus ranges its variables over the field values, or domain elements. Both types of calculus are subsets of first order logic.
Yes, for some functions A, and not for others.
The domain and range of the composite function depend on both of the functions that make it up.
The domain of a function represents the set of x values and the range represents the set of y values. Since y=x, the domain is the same as the range. In this case, they both are the set of all real numbers.
The domain and range are (0, infinity).Both the domain and the range are all non-negative real numbers.
5
The Domain and Range are both the set of real numbers.
They are both sets such that a function maps each element of the first set to a unique element in the second. The first set is called the domain and the second is called the codomain or range.
The domain and range are both [-6, +6].
The domain and range of Y = 1.3x + 8 are both [-infinity, +infinity]
7
FromA function is a relation between a given set of elements called the domain and a set of elements called the co-domain. The function associates each element in the domain with exactly one element in the co-domain. The elements so related can be any kind of thing (words, objects, qualities) but are typically mathematical quantities, such as real numbers.An example of a function with domain {A,B,C} and co-domain {1,2,3} associates A with 1, B with 2, and C with 3. An example of a function with the real numbers as both its domain and co-domain is the function f(x) = 2x, which associates every real number with the real number twice as big. In this case, we can write f(5) = 10.
The domain and range of the equation y = 2x+8 are both [-infinity,+infinity].