The integral of cot(x)dx is ln|sin(x)| + C
Chat with our AI personalities
1/3ln(sin3x) + C
Integrate 2sin(x)cos(x)dxLet u = cos(x) and du = -sin(x)dx and pull out the -2:-2[Integral(u*du)]Integrate with respect to u:-2(u2)/2 + CSimplify:-u2 + CReplace u with cos(x):-cos2(x) + C
.2x^5+x+C
e 2x = (1/2) e 2x + C ============
dy/dx = 3 integral = (3x^2)/2