Integrate 2sin(x)cos(x)dx
Let u = cos(x) and du = -sin(x)dx and pull out the -2:
-2[Integral(u*du)]
Integrate with respect to u:
-2(u2)/2 + C
Simplify:
-u2 + C
Replace u with cos(x):
-cos2(x) + C
Chat with our AI personalities
-4
2sinxcosx-cosx=0 Factored : cosx(2sinx-1)=0 2 solutions: cosx=0 or sinx=.5 For cosx=0, x=90 or 270 degrees For sinx=.5, x=30 degrees x = {30, 90, 270}
1/3ln(sin3x) + C
.2x^5+x+C
The integral of cot(x)dx is ln|sin(x)| + C