base
If y is an exponential function of x then x is a logarithmic function of y - so to change from an exponential function to a logarithmic function, change the subject of the function from one variable to the other.
Yes.
Yes.
The graph of an exponential function f(x) = bx approaches, but does not cross the x-axis. The x-axis is a horizontal asymptote.
Yes, y = loga(x) means the same as x=ay.
An exponential function such as y=b^x increases as x goes to infinity for all values in the domain. That is, the function increases from left to right anywhere you look on the graph, as long as the base b is greater than 1. This is called a "Growth" function. However, the graph is decreasing as x goes to infinity if (a) the opposite value of the input is programmed into the function, as in y=b^-x, or if (b) the base is less than 1, as in y=(1/2)^x.
An exponential growth function actually describes a quantity that increases exponentially over time, with the rate of increase proportional to the current value of the quantity, resulting in rapid growth. The formula for an exponential growth function is y = a * (1 + r)^t, where 'a' is the initial quantity, 'r' is the growth rate, and 't' is time.
Yuo cannot include a graphical illustration here. Take a look at the Wikipedia, under "exponential function" and "logistic function". Basically, the exponential function increases faster and faster over time. The logistics function initially increases similarly to an exponential function, but then eventually flattens out, tending toward a horizontal asymptote.
True
A linear function grows ( or shrinks) at a constant rate called its slope.An exponential function grows ( or shrinks) at a rate which increases(or decreases)over time. From a practical standpoint linear growth (or shrinkage) is simple and predictable. Exponential growth is essentially out of control and unsustainableand exponential decay soon becomes negligible.if y=az + b then y is a linear function of z. If y=aebz then y is an exponential function of z. If y= acbz then y is still an exponential function of z because you can substitute c=ek (so that k=logec) to give you y=aekbz .
The linear function increases by the same number each step. The exponential function increases more each step. (1,1),(2,2),(3,3) etc (1,1).(2,4),(3,9),(4,16), etc see how the second one increases a lot?
Yes.
Yes.
A __________ function takes the exponential function's output and returns the exponential function's input.
The parent function of the exponential function is ax
That means that the growth is equal to, or similar to, an exponential function, which can be written (for example) as abx, for constants "a" and "b". One characteristic of exponential growth is that the function increases by the same percentage in the same time period. For example, it increases 5%, or equivalently by a factor of 1.05, every year.
No. The inverse of an exponential function is a logarithmic function.