answersLogoWhite

0

What is 500 x 0?

Updated: 4/28/2022
User Avatar

Wiki User

13y ago

Best Answer

When you are multiplying, you are stating how many times the number is stated. Here, it is stated as "0" times, therefore the answer is "0." Any number multiplied by 0 or divided into/by 0, the answer will always be 0.

500x0=0

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is 500 x 0?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

X2 - 3x - 4 equals 0?

x2 - 3x - 4 = 0 so (x+1)(x-4) = 0, so x+1 = 0 and x-4 = 0, so x = -1 or 4


Why derivative of mod x does not exist graphically?

Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.


What x2 - x - 12 0?

x2 - x - 12 = 0 &there4; (x + 3)(x - 4) = 0 &there4; x &isin; {-3, 4}


How do you solve x squared plus 12x?

Factor. X^2 + 12X X(X + 12) = 0 X = 0 ------------- X + 12 = 0 X = - 12 --------------


What is limit as x approaches 0 of sin squared x by x?

lim(x->0) of sin(x)^2/x we use L'Hospital's Rule and derive the top and the bottomd/dx(sin(x)^2/x)=2*sin(x)*cos(x)/1lim(x->0) of 2*sin(x)*cos(x)=2*0*1=0