The instantaneous slope of a curve is the slope of that curve at a single point. In calculus, this is called the derivative. It also might be called the line tangent to the curve at a point.
If you imagine an arbitrary curve (just any curve) with two points on it (point P and point Q), the slope between P and Q is the slope of the line connecting those two points. This is called a secant line. If you keep P where it is and slide Q closer and closer to P along the curve, the secant line will change slope as it gets smaller and smaller. When Q gets extremely close to P (so that there is an infinitesimal space between P and Q), then the slope of the secant line approximates the slope at P. When we take the limit of that tiny distance as it approaches zero (meaning we make the space disappear) we get the slope of the curve at P. This is the instantaneous slope or the derivative of the curve at P.
Mathematically, we say that the slope at P = limh→0 [f(x+h) - f(x)]÷h = df/dx, where h is the distance between P and Q, f(x) is the position of P, f(x+h) is the position of Q, and df/dx is the derivative of the curve with respect to x.
The formula above is a specific case where the derivative is in terms of x and we're dealing with two dimensions. In physics, the instantaneous slope (derivative) of a position function is velocity, the derivative of velocity is acceleration, and the derivative of acceleration is jerk.
Chat with our AI personalities
It is the rate of change at one given moment, and it is the same as the value of the derivative at a particular point. The point may be thought of as that given moment. When we talk about functions, the instantaneous rate of change at a point is the same as the slope, m, of the tangent line.. Sometimes we think of it as the slope of the curve. The best way to understand this is with the difference quotient and limits. The difference quotient is the average rate of change of y with respect to x. If we then look at the difference quotient and we let delta x ->0, this will be the instantaneous rate of change. In other words, the time interval gets smaller and smaller. Difference quotient is delta y/ delta x where delta represents the change.
When you take the derivative of a function, you are seeking a variation of that function that provides you with the slope of the tangent (instantaneous slope) at any value of (x). For example, the derivative of the function f(x)=x^2 is f'(x)=2x. Notice that the derivative is denoted by the apostrophe inside the f and (x). Also note that at x=0, f'(x)=0, which means that at x=0 the slope of the tangent is zero, which is correct for the function y=x^2.
The slope equals 3
point slope form is y-y1=m(x-x1). x1 and y1 are both points and m is the slope.
Versant