The antiderivative of a function which is equal to 0 everywhere is a function equal to 0 everywhere.
The way to disprove an antiderivative is to simply differentiate the function and see if it matches the integral expression. Remember that an antiderivative expression must include a term often coined "C-" an arbitrary constant. For example, ∫(x^3 +14x)dx= (1/4)X^4+ 7X^2 +C. To verify that this is correct, take the derivative. You get x^3 +14x.
x4/12 since derivative of x4/12 is 4x3/12 or x3/3
yes, look at the function f(x)=3x^2 The antiderivative is x^3+C where C is the constant and is more than one value for C. In fact, 3x^2 will have an infinite number of antiderivatives.
The fundamental theorum of calculus states that a definite integral from a to b is equivalent to the antiderivative's expression of b minus the antiderivative expression of a.
The antiderivative of 2x is x2.
(2/3)*x^(3/2)
sqrt(1) + 3*sqrt(x) = 1 + 3*x^1/2So the antiderivative is x + [3*x^(3/2)]/(3/2) + c = x + 2*x^(3/2) + c where c is the constant of integration.
int(e 3x) = (1/3)e 3x ========
The antiderivative of a function which is equal to 0 everywhere is a function equal to 0 everywhere.
The way to disprove an antiderivative is to simply differentiate the function and see if it matches the integral expression. Remember that an antiderivative expression must include a term often coined "C-" an arbitrary constant. For example, ∫(x^3 +14x)dx= (1/4)X^4+ 7X^2 +C. To verify that this is correct, take the derivative. You get x^3 +14x.
35x2
Using u-substitution (where u = sinx), you'll find the antiderivative to be 0.5*sin2x + C.
I assume you mean -10x^4? In that case, antiderivative would be to add one to the exponent, then divide by the exponent. So -10x^5, then divide by 5. So the antiderivative is -2x^5.
x4/12 since derivative of x4/12 is 4x3/12 or x3/3
Antiderivative of x/-1 = -1(x^2)/2 + C = (-1/2)(x^2) + C Wolfram says antiderivative of x^-1 is log(x) + C
By antiderivative do you mean integral? If yes, integral x^1 dx= (x^2)/2