When the first derivative of the function is equal to zero and the second derivative is positive.
Well.. this is the formula to get the derivative of the modulus - d|f(x)|/dx = [ |f(x)|/f(x) ] * f'(x)
A line. The derivative of a function is its slope. If the slope is a constant then the graph is a line.
13
A derivative graph tracks the slope of a function.
well, the second derivative is the derivative of the first derivative. so, the 2nd derivative of a function's indefinite integral is the derivative of the derivative of the function's indefinite integral. the derivative of a function's indefinite integral is the function, so the 2nd derivative of a function's indefinite integral is the derivative of the function.
A linear function, for example y(x) = ax + b has the first derivative a.
All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2
When the first derivative of the function is equal to zero and the second derivative is positive.
If the first derivative if a function is a constant that the original function has only one slope across its entire domain, so it is a line.
If the first derivative of a function is greater than 0 on an interval, then the function is increasing on that interval. If the first derivative of a function is less than 0 on an interval, then the function is decreasing on that interval. If the second derivative of a function is greater than 0 on an interval, then the function is concave up on that interval. If the second derivative of a function is less than 0 on an interval, then the function is concave down on that interval.
To get the second derivative of potential energy, you first need to calculate the first derivative of potential energy with respect to the variable of interest. Then, you calculate the derivative of this expression. This second derivative gives you the rate of change of the slope of the potential energy curve, providing insight into the curvature of the potential energy surface.
you have to first find the derivative of the original function. You then make the derivative equal to zero and solve for x.
To trace a curve using differential calculus, you use the fact that the first derivative of the function is the slope of the curve, and the second derivative is the slope of the first derivative. What this means is that the zeros (roots) of the first derivative give the extrema (max or min) or an inflection point of the function. Evaluating the first derivative function at either side of the zero will tell you whether it is a min/max or inflection point (i.e. if the first derivative is negative on the left of the zero and positive on the right, then the curve has a negative slope, then a min, then a positive slope). The second derivative will tell you if the curve is concave up or concave down by evaluating if the second derivative function is positive or negative before and after extrema.
Well.. this is the formula to get the derivative of the modulus - d|f(x)|/dx = [ |f(x)|/f(x) ] * f'(x)
Linear function:No variable appears in the function to any power other than 1.A periodic input produces no new frequencies in the output.The function's first derivative is a number; second derivative is zero.The graph of the function is a straight line.Non-linear function:A variable appears in the function to a power other than 1.A periodic function at the input produces new frequencies in the output.The function's first derivative is a function; second derivative is not zero.The graph of the function is not a straight line.
No.