(e^x)^8 can be written as e^(8*x), so the integral of e^(8*x) = (e^(8*x))/8 or e8x/ 8, then of course you have to add a constant, C.
The integral would be 10e(1/10)x+c
integral of e to the power -x is -e to the power -x
(ex)3=e3x, so int[(ex)3dx]=int[e3xdx]=e3x/3 the integral ex^3 involves a complex function useful only to integrations such as this known as the exponential integral, or En(x). The integral is:-(1/3)x*E2/3(-x3). To solve this integral, and for more information on the exponential integral, go to http://integrals.wolfram.com/index.jsp?expr=e^(x^3)&random=false
C = k*a*d*e^3/sqrt(m) where k is a constant.
replace square root o x with t.
better place to ask would be yahoo answers
maths signs
(e^x)^8 can be written as e^(8*x), so the integral of e^(8*x) = (e^(8*x))/8 or e8x/ 8, then of course you have to add a constant, C.
This integral cannot be performed analytically. Ony when the integral is taken from 0 to infinity can it be computed by squaring the integral and applying a change of variable (switching to polar coordinates). if desired I could show how to do this.
2 = Cube Root of Eight
2 is the cube root of eight
45
The integral would be 10e(1/10)x+c
Cube root is the same as to the power of a third; when multiplying/dividing powers of a number add/subtract the powers; when a power is to another power, multiply the powers; as it is all e to some power: e³/(e²)^(1/3) × e^13 = e³/e^(2/3) × e^13 = e^(3 - 2/3 + 13) = e^(15 1/3) = e^(46/3) Which can also be expressed as "the cube root of (e to the power 46)" or "(the cube root of e) to the power 46".
The square root of 16 is 4 and 4 cubed is 16x4=64
integral of e to the power -x is -e to the power -x