answersLogoWhite

0

The integral of the absolute value function, |x|, is given by the piecewise function ∫|x|dx = (x^2)/2 + C for x ≥ 0 and ∫|x|dx = (-x^2)/2 + C for x < 0, where C is the constant of integration. This is because the absolute value function changes its behavior at x = 0, resulting in two different expressions for the integral depending on the sign of x.

User Avatar

ProfBot

4mo ago

What else can I help you with?

Continue Learning about Calculus

How do you integrate periodic functions?

Same as any other function - but in the case of a definite integral, you can take advantage of the periodicity. For example, assuming that a certain function has a period of pi, and the value of the definite integral from zero to pi is 2, then the integral from zero to 2 x pi is 4.


What is the integral of e raised to x cubed?

(ex)3=e3x, so int[(ex)3dx]=int[e3xdx]=e3x/3 the integral ex^3 involves a complex function useful only to integrations such as this known as the exponential integral, or En(x). The integral is:-(1/3)x*E2/3(-x3). To solve this integral, and for more information on the exponential integral, go to http://integrals.wolfram.com/index.jsp?expr=e^(x^3)&amp;random=false


What is the integral of the derivative with respect to x of a function of x with respect to x?

&acirc;&circ;&laquo; d/dx f(x) dx = f(x) + C C is the constant of integration.


What is the relationship of integral and differential calculus?

We say function F is an anti derivative, or indefinite integral of f if F' = f. Also, if f has an anti-derivative and is integrable on interval [a, b], then the definite integral of f from a to b is equal to F(b) - F(a) Thirdly, Let F(x) be the definite integral of integrable function f from a to x for all x in [a, b] of f, then F is an anti-derivative of f on [a,b] The definition of indefinite integral as anti-derivative, and the relation of definite integral with anti-derivative, we can conclude that integration and differentiation can be considered as two opposite operations.


Integral of e to the power of -x?

integral of e to the power -x is -e to the power -x

Related Questions

What is the integral of the function 1 sinc(x) with respect to x?

The integral of the function 1 sinc(x) with respect to x is x - cos(x) C, where C is the constant of integration.


How do you explain negative integral?

The definite integral of a function: y = f(x) from x = a to x = b is equal to the area between the function curve and the 'x' axis from x = a to 'x' = b.


Why you use even and odd function in mathematics?

If you know that a function is even (or odd), it may simplify the analysis of the function, for several purposes. One example is the calculation of definite integrals: for an odd function, the integral of a function from (-x) to (x) (note 1) is zero; for an even function, this integral is twice the integral of the function from (0) to (x). Note 1: That is, the area under the function; for negative values, this "area" is taken as negative) is


Importance of anti-differentiation in integral calculus?

If F(x) is a function, and F &lsquo;(x) = f(x), then F(x) is the antiderivative (or indefinite integral) of f(x) It is the cornerstone of integral calculus and is used for areas, volumes, lengths and so much more!


What is the integretion of modxdx?

mod x, or |x| is actually a conjunction of two functions: 1) x = -x, for x &lt; 0 2) x = x, for x &gt;= 0. Whenever you're calculating integral of |x|, you have to consider those two functions, for example: integral of |x| from -5 to 4 by dx is a sum of integrals of -x from -5 to 0 by dx and integral of x from 0 to 4 by dx.


What is the answer of 1 divide by x square?

What do you mean? As this is a calculus question, I presume that you are asking for a derivative or integral The derivative of any function of the form &fnof;(x) = a * x ^ n is &fnof;'(x) = a * n * x ^ (n-1) The integral of any function of the form &int; a*x ^ n is a / (n+1) * x ^ (n+1) + C Your function that you gave is 1 / x^(2) which is equal to: x^(-2) Thus the derivative is: -2 * x^(-3) And the integral is: -x^(-1) + C


What is the integral of a constant multiplied by a function of x with respect to x?

&acirc;&circ;&laquo; af(x) dx = a &acirc;&circ;&laquo; f(x) dx


What is the derivative with respect to x of the integral of a function of x with respect to x?

d/dx &acirc;&circ;&laquo; f(x) dx = f(x)


How do you integrate functions?

To integrate a function you find what the function you have is the derivative of. for example the derivative of x^2 is 2x. so the integral of 2x is x^2.


How do you integrate periodic functions?

Same as any other function - but in the case of a definite integral, you can take advantage of the periodicity. For example, assuming that a certain function has a period of pi, and the value of the definite integral from zero to pi is 2, then the integral from zero to 2 x pi is 4.


How you can defferentiate an integral?

If the upper limit is a function of x and the lower limit is a constant, you can differentiate an integral using the Fudamental Theorem of Calculus. For example you can integrate Integral of [1,x^2] sin(t) dt as: sin(x^2) d/dx (x^2) = sin(x^2) (2x) = 2x sin(x^2) The lower limit of integration is 1 ( a constant). The upper limit of integration is a function of x, here x^2. The function being integrated is sin(t)


How can I generate a declining function with constraints on the x and y intercepts so that the integral of the curve is constant?

The integral of a given function between given integration limits will always be a constant. The integral of a given function between variable limits - for example, from 0 to x - can only be a constant if the function is equal to zero everywhere.