answersLogoWhite

0


Best Answer

sin(pi/2)=1

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the sin pi over 2?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

What is the period of y equals sin5x?

The period of y=sin(x) is 2*pi, so sin(x) repeats every 2*pi units. sin(5x) repeats every 2*pi/5 units. In general, the period of y=sin(n*x) is 2*pi/n.


If x is obtuse and sin x equals b how do you show sin 2x is less than b?

you need to explain it better but with what i got i if sin x equals b obviously sin 2x is double of b hence sin 2x is more than b. {Not obvious at all, actually. And the above is false. Sin(Pi/2) = 1 and Sin(Pi)=0. But clearly 2 is not greater than 0. Contradiction.} Obtuse means Pi/2 < x < Pi So, sin(x) = b means b>0, because sin(y) > 0 if 0<y<Pi sin(2x)=2sin(x)cos(x) cos(x) < 0 because cos(Pi/2)= 0 and the derivative is negative there. Hence, sin(2x) = 2 sin(x) cos(x) = 2*b*(-K), where K is a positive constant Since b>0, -2Kb < b


What is the relation between definite integrals and areas?

Consider the integral of sin x over the interval from 0 to 2pi. In this interval the value of sin x rises from 0 to 1 then falls through 0 to -1 and then rises again to 0. In other words the part of the sin x function between 0 and pi is 'above' the axis and the part between pi and 2pi is 'below' the axis. The value of this integral is zero because although the areas enclosed by the parts of the function between 0 and pi and pi and 2pi are the same the integral of the latter part is negative. The point I am trying to make is that a definite integral gives the area between a function and the horizontal axis but areas below the axis are negative. The integral of sin x over the interval from 0 to pi is 2. The integral of six x over the interval from pi to 2pi is -2.


What is the cos pi over 2?

The answer is:cos (pi/2) = 0


What is the derivative of cos pi x?

-(pi)*sin(pi*x)

Related questions

What is sin of 3 pi over 2?

sin pi/2 =1 sin 3 pi/2 is negative 1 ( it is in 3rd quadrant where sin is negative


What is the exact value of the expression cos 7pi over 12 cos pi over 6 -sin 7pi over 12 sin pi over 6?

cos(a)cos(b)-sin(a)sin(b)=cos(a+b) a=7pi/12 and b=pi/6 a+b = 7pi/12 + pi/6 = 7pi/12 + 2pi/12 = 9pi/12 We want to find cos(9pi/12) cos(9pi/12) = cos(3pi/4) cos(3pi/4)= cos(pi-pi/4) cos(pi)cos(pi/4)-sin(pi)sin(pi/4) cos(pi)=-1 sin(pi)=0 cos(pi/4) = √2/2 sin(pi/4) =√2/2 cos(pi)cos(pi/4)-sin(pi)sin(pi/4) = - cos(pi/4) = -√2/2


What is the sin pi over 4?

sin(pi/4) and cos(pi/4) are both the same. They both equal (√2)/2≈0.7071■


What is the value of sin 3 pi over 2?

sin(3π/2) = -1


What is the sin of pi divided by 2?

Do you mean Sin(pi/2) = 1 or [Sin(pi)] /2 = 0.0274....


What is the exact value using a sum or difference formula of the expression cos 11pi over 12?

11pi/12 = pi - pi/12 cos(11pi/12) = cos(pi - pi/12) cos(a-b) = cos(a)cos(b)+sin(a)sin(b) cos(pi -pi/12) = cos(pi)cos(pi/12) + sin(pi)sin(pi/12) sin(pi)=0 cos(pi)=-1 Therefore, cos(pi -pi/12) = -cos(pi/12) pi/12=pi/3 -pi/4 cos(pi/12) = cos(pi/3 - pi/4) = cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) cos(pi/3)=1/2 sin(pi/3)=sqrt(3)/2 cos(pi/4)= sqrt(2)/2 sin(pi/4) = sqrt(2)/2 cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) = (1/2)(sqrt(2)/2 ) + (sqrt(3)/2)( sqrt(2)/2) = sqrt(2)/4 + sqrt(6) /4 = [sqrt(2)+sqrt(6)] /4 Therefore, cos(pi/12) = (sqrt(2)+sqrt(6))/4 -cos(pi/12) = -(sqrt(2)+sqrt(6))/4 cos(11pi/12) = -(sqrt(2)+sqrt(6))/4


What is the exact values of sin 2 pi?

2*pi is one complete revolution, i.e. 360 degrees. Sin of 2*pi = sin 360º = 0


Sin x - cos x 0 0?

sin x - cos x = 0sin x = cos x(sin x)^2 = (cos x)^2(sin x)^2 = 1 - (sin x)^22(sin x)^2 = 1(sin x)^2 = 1/2sin x = ± √(1/2)sin x = ± (1/√2)sin x = ± (1/√2)(√2/√2)sin x = ± √2/2x = ± pi/4 (± 45 degrees)Any multiple of 2pi can be added to these values and sine (also cosine) is still ± √2/2. Thus all solutions of sin x - cos x = 0 or sin x = cos x are given byx = ± pi/4 ± 2npi, where n is any integer.By choosing any two integers , such as n = 0, n = 1, n = 2 we can find some solutions of sin x - cos x = 0.n = 0, x = ± pi/4 ± (2)(n)(pi) = ± pi/4 ± (2)(0)(pi) = ± pi/4 ± 0 = ± pi/4n = 1, x = ± pi/4 ± (2)(n)(pi) = ± pi/4 ± (2)(1)(pi) = ± pi/4 ± 2pi = ± 9pi/4n = 2, x = ± pi/4 ± (2)(n)(pi) = ± pi/4 ± (2)(2)(pi) = ± pi/4 ± 4pi = ± 17pi/4


What is the period of y equals sin5x?

The period of y=sin(x) is 2*pi, so sin(x) repeats every 2*pi units. sin(5x) repeats every 2*pi/5 units. In general, the period of y=sin(n*x) is 2*pi/n.


What is the sin of 2 pie?

sin(2*pi) - not pie - is the same as sin(0) = 0


How do you write cosine in terms of sine?

cos(x) = sin(pi/2-x) = -sin(x-pi/2)


What are the x-intercepts of unit circle in sin?

all multiples of pi. pi, 2 pi, - pi, -2 pi and so on...