It will taken 8 amps
<<>>
The conversion of 2.5 sq mm wire to AWG is equal to a #12 wire. The ampacity of a #12 copper wire with an insulation factor of 90 degrees C is 20 amps.
Chat with our AI personalities
A #8 copper wire with an insulation factor of 75 or 90 degrees C is rated at 45 amps.
Yes, the total amperage load of a 2000 watt heater at 240 volts is 8.3 amps. Keep in mind that the wire feeding the heater must be a #10 because the breaker is rated at 25 amps. A wire's ampacity rating can be larger that the breaker amperage rating but never smaller. Example, a #14 rated at 15 amps or a #12 rated at 20 amps can not be connected to a 25 amp breaker. The 25 amp breaker does not trip until it reaches 25 amps well over the allowable amperage of the #14 amd #12 wire. This is why a #10 wire must be used as its rating is 30 amps.
For typical residential house wiring 12 AWG wire is required for a 20 Amp breaker. If you change out the breaker for a 25 A breaker you would have to rewire the circuit with 10 AWG. In that case you could up the breaker to 30 Amps. All outlets and switches should be rated at the same voltage and current as the breaker.
I'm assuming the electrical system is single phase, such as a home. If not, you need to hire someone to do the work for you. First, 6000 watts at 120v is 50 amps, so if your load is truly 6000 watts, 30 amps isn't enough. If your 6000 watts is 240v, which would draw 25 amps, then 30 amps is plenty. Ten gauge wire may not be placed an a breaker or fuse larger than 30 amps.
You have to rewire the circuit completely with 10 AWG wire and replace all outlets and switches with devices rated at 25 Amps. Note 25 Amp breaker is an unusual size. 10 AWG will go up to 30 amps, and that would be the way to go.