It's very easy for two rectangles to have the same area and different perimeters,
or the same perimeter and different areas. In either case, it would be obvious to
you when you see them that there's something different about them, and they
would not fit one on top of the other.
But if two rectangles have the same area and the same perimeter, then to look at them
you'd swear that they're the same rectangle, and one could be laid down on the other
and fit exactly.
Not necessarily. Let's say that there is a circle with the area of 10. Now there is a star with the area of 10. They do not have the same perimeter, do they? That still applies with rectangles. There might be a very long skinny rectangle and a square next to each other with the same area, but that does not mean that they have the same perimeter. Now if the rectangles are congruent then yes.
You can't tell the perimeter from the area. There are an infinite number of different shapes,all with different perimeters, that have the same area. Even if you only consider rectangles,there are still an infinite number of those that all have the same area and different perimeters.Here are a few rectangles with area of 6 square feet:Dimensions ... Perimeter0.75 x 8 . . . . . . 17.51 x 6 . . . . . . . . 141.5 x 4 . . .. . . . 112 x 3 . . . . . . . . 10
You can't tell the linear dimensions from knowing only the area. There are an infinite number of shapes that all have the same area. Even if you consider only rectangles, there are still an infinite number of different rectangles, all with different lengths and widths, that all have areas of 5,000 acres.
You can't. The perimeter doesn't tell the area. There are an infinite number of shapes with different dimensions and different areas that all have the same perimeter.
4 x 4 and 6 x 3
no
There is no standard relationship between perimeter and area. For example, you can have two rectangles that have the same perimeter, but different area.
they dont
That depends on the rectangle! You can have different rectangles with the same area, but with different perimeters.
The perimeter for a certain area varies, depending on the figure. For example, a circle, different ellipses, a square, different rectangles, and different shapes of triangles, all have different perimeters or circumferences, for the same area.The perimeter for a certain area varies, depending on the figure. For example, a circle, different ellipses, a square, different rectangles, and different shapes of triangles, all have different perimeters or circumferences, for the same area.The perimeter for a certain area varies, depending on the figure. For example, a circle, different ellipses, a square, different rectangles, and different shapes of triangles, all have different perimeters or circumferences, for the same area.The perimeter for a certain area varies, depending on the figure. For example, a circle, different ellipses, a square, different rectangles, and different shapes of triangles, all have different perimeters or circumferences, for the same area.
10cm by 10cm (perimeter=40cm), 5cm by 20cm (perimeter=50cm), 50cm by 2cm (perimeter=104cm), 100cm by 1cm (perimeter=202cm). All of these rectangles' areas are 100cm2
Not enough data. Different rectangles (different length:width ratios) can have the same area, but different perimeters.
Not necessarily. Let's say that there is a circle with the area of 10. Now there is a star with the area of 10. They do not have the same perimeter, do they? That still applies with rectangles. There might be a very long skinny rectangle and a square next to each other with the same area, but that does not mean that they have the same perimeter. Now if the rectangles are congruent then yes.
No, it is not. I'll give you two examples of a rectangle with a perimeter of 1. The first rectangle has dimensions of 1/4x1/4. The area is 1/16. The second rectangle has dimensions of 3/8x1/8. The area is 3/64. You can clearly see that these two rectangles have the same perimeter, yet the area is different.
thare is only 1 differint rectangles
This browser is hopeless for drawing but consider the following two rectangles: a*b and (a+1)*(b-1). Their perimeter will be 2a+2b but unless a = b-1, their area will be different.
Yes, it can because a 3 by 6 rectangle has the perimeter of 18 and has the area of 18! :)