No, only at one point, perpendicular to the radius
Chat with our AI personalities
the length of thr direct common tangent will be 2*{1/2 power of (r1*r2)} the answer will be 8 units in this case...
Equation of circle: x^2 +y^2 -6x +4y +5 = 0 Completing the squares (x -3)^2 +(y +2)^2 = 8 Centre of circle: (3, -2) Radius of circle: square root of 8 Points of contact are at: (1, 0) and (5, 0) where the radii touches the x axis Slope of 1st tangent line: 1 Slope of 2nd tangent line: -1 Equation of 1st tangent: y -0 = 1(x -1) => y = x -1 Equation of 2nd tangent: y -0 = -1(x -5) => y = -x +5
2 circles that intersect each other
arc
First find the slope of the circle's radius as follows:- Equation of circle: x^2 +10x +y^2 -2y -39 = 0 Completing the squares: (x+5)^2 + (y-1)^2 -25 -1 -39 = 0 So: (x+5)^2 +(y-1)^2 = 65 Centre of circle: (-5, 1) and point of contact (3, 2) Slope of radius: (1-2)/(-5-3) = 1/8 which is perpendicular to the tangent line Slope of tangent line: -8 Tangent equation: y-2 = -8(x-3) => y = -8x+26 Tangent equation in its general form: 8x+y-26 = 0