answersLogoWhite

0

ellipses do have asymptotes, but they are imaginary, so they are generally not considered asymptotes.

If the equation of the ellipse is in the form

a(x-h)^2 + b(y-k)^2 = 1

then the asymptotes are the lines

a(y-k)+bi(x-h)=0

ai(y-k)+b(x-h)=0

the intersection of the asymptotes is the center of the ellipse.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
BeauBeau
You're doing better than you think!
Chat with Beau
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
More answers

No. The definition of an asymptote is a parabolic curve that when extended to infinity, meets a specific line such as x=2, y=0, etc. Since an ellipse does not extend infinitely and is a closed shape, it does not have asymptotes.

User Avatar

Wiki User

12y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Does an ellipse have asymptotes
Write your answer...
Submit
Still have questions?
magnify glass
imp