how to find the perimeter of a right angled triangle using the area
to find the area of any triangle follow the formula: 1/2(b*h) "B" - stands for the base of the triangle "H" - stands for the height of the triangle
If it is a right triangle, you can use the Pythagorean theorem to find the height since it will be on of the sides. If it is an equilateral triangle, you can break it up into two right triangles and use the part above. If it is an oblique triangle, you use the angles and some trigonometry to find it. Since the area is 1/2 b x h, if you are given the area, you can solve for the height.
The area of a right-angled triangle with base 8 cm and hypotenuse 10 cm is: 24 cm2
Area of a right triangle = (1/2 the length of one leg) x (length of the other leg)
how to find the perimeter of a right angled triangle using the area
it must be a right triangle.
The given dimensions are not compliant for the construction of a right angle triangle but the area of any triangle is: 0.5*base*height
If you are only given the side lengths of a scalene triangle, it is impossible for you to find for the area, unless you are given more information... like the height of the triangle for example. If this is a right triangle you would like to find the area of, you can multiply the length of each leg with each other, and then divide that product by 2 to conclude the area of the triangle.
use the formula. ti
you can't unless you measure it.
One-half the base.
Area of a right angle triangle is: 0.5*base*height
to find the area of any triangle follow the formula: 1/2(b*h) "B" - stands for the base of the triangle "H" - stands for the height of the triangle
1/2*base of triangle*height(the perpendicular)=Area of right angled triangle
if the triangle has one right angle in it
If it is a right triangle, you can use the Pythagorean theorem to find the height since it will be on of the sides. If it is an equilateral triangle, you can break it up into two right triangles and use the part above. If it is an oblique triangle, you use the angles and some trigonometry to find it. Since the area is 1/2 b x h, if you are given the area, you can solve for the height.