You will need to divide the shaded area into smaller parts, such as triangles or rectangles, or find the length of sides of these polygons.
To find the area of the shaded part in a rectangle, you first find the total area of the rectangle by multiplying its length by its width. Then, you subtract the area of the non-shaded part from the total area to get the area of the shaded part. The formula would be: Area of shaded part = Total area of rectangle - Area of non-shaded part
Base X Height - pi(r)^2
(pi * radius squared) * ( sector angle / 360 )
This question is too vague to have an answer, but here is one.For the shaded area (pie wedge) of a circle, find the area of the circle and multiply by the ratio of the wedge angle to the entire circle (angle/360).For the shaded region of a triangle, find the area of the smaller triangle, if necessary using trig functions to define a known angle or length of a side.For other polygons, you may be able to divide the area into triangles separately, then sum their areas.
13cm
To find the area of the shaded part in a rectangle, you first find the total area of the rectangle by multiplying its length by its width. Then, you subtract the area of the non-shaded part from the total area to get the area of the shaded part. The formula would be: Area of shaded part = Total area of rectangle - Area of non-shaded part
Well, darling, if you shaded all but three eighths of the rectangle, then the shaded area is 5/8 of the total rectangle. To find the percentage of the rectangle that is not shaded, you subtract the shaded area from 100%. So, 100% - 62.5% (5/8 as a percentage) = 37.5%. Voilà, 37.5% of the rectangle is not shaded.
To find the area of the shaded region (the rectangle inside the hexagon), we first calculate the area of the hexagon using the formula ( \text{Area} = \frac{3\sqrt{3}}{2} \times a^2 ), where ( a ) is the apothem. Given that the apothem is 15.59 units, the area of the hexagon is approximately ( \frac{3\sqrt{3}}{2} \times (15.59^2) \approx 609.67 ) square units. Assuming the rectangle’s area is not specified, the shaded area would be the hexagon's area minus the rectangle's area. If the rectangle's area is provided, subtract it from the hexagon's area to find the shaded region's area.
The area of the shaded region can be gotten by multiplying the area of the circle by the subtended angle of the sector.
15.45-15.48 apex!!
Well, honey, the area of a shaded region is simply the difference between the total area and the area of the unshaded parts. Just calculate the area of the entire shape and subtract the areas of any parts that aren't shaded. It's basic math, darling, nothing to lose sleep over.
If we can't see the shaded area or if you don't tell us what it is, we'd just be guessing.
You either need to find the area of the triangle and subtract it from that of the rectangle OR you find the areas of the bits of the rectangle that are outside the triangle and add them together. Without more details of the triangle, it is not possible to give a more detailed answer.
The probability is the ratio of the area of the shaded area to the area of the whole figure.
Base X Height - pi(r)^2
45
Sure thing, darling! To find the area of the shaded region in a circle with a central angle of 40 degrees and a radius of 9 cm, you first calculate the area of the entire circle using the formula A = πr^2. Then, you find the fraction of the circle that the shaded region represents, which is 40/360. Multiply this fraction by the total area of the circle to get the area of the shaded region. Easy peasy lemon squeezy!