For every point A = (x,y) in your figure, a 180 degree counterclockwise rotation about the origin will result in a point A' = (x', y') where:
x' = x * cos(180) - y * sin(180)
y' = x * sin(180) + y * cos(180)
Happy-fun time fact: This is equivalent to using a rotation matrix from Linear Algebra!
Because a rotation is an isometry, you only have to rotate each vertex of a polygon, and then connect the respective rotated vertices to get the rotated polygon.
You can rotate a closed curve as well, but you must figure out a way to rotate the infinite number of points in the curve. We are able to do this with straight lines above due to the property of isometries, which preserves distances between points.
Chat with our AI personalities
180 degrees.
Move it 3 times* * * * *or once in the anti-clockwise direction.
You dont, its just 90 degrees 3 times..
To rotate a figure 180 degrees clockwise about the origin you need to take all of the coordinates of the figure and change the sign of the x-coordinates to the opposite sign(positive to negative or negative to positive). You then do the same with the y-coordinates and plot the resulting coordinates to get your rotated figure.
It is (-1, 6).