it depends on the method of subtraction. If the vectors are drawn graphically then you must add the negative of the second vector (same magnitude, different direction) tail to tip with the first vector. If the drawing is to scale, then the resultant vector is the difference. If you are subtracting two vectors <x1, y1> - <x2, y2> then you can subtract them component by component just like scalars. The same rules apply to 3-dimensional vectors
Coplanar vectors lie within the same plane, meaning they can be represented by arrows with their tails at the same point. Collinear vectors, on the other hand, lie along the same line, meaning they have the same or opposite directions. In essence, coplanar vectors can be parallel or intersecting within the same plane, while collinear vectors are always parallel or antiparallel along the same line.
If these are vectors, then ba = - ab
Given two vectors a and b, the area of a parallelogram formed by these vectors is:a x b = a*b * sin(theta) where theta is the angle between a and b, and where x is the norm/length/magnitude of vector x.
Dropping a bullet and shooting a bullet at the same time. They will touch the ground at the same time because they are perpendicular vectors.
They are used in airplanes and in sailboats.
To subtract more vectors, you can perform vector subtraction by subtracting each component of the vectors separately. Start by subtracting the corresponding components of the vectors, i.e., subtract the x-components, then the y-components, and so on. This will give you the resulting vector.
Because scalars do not take in the direction but just the magnitude while vectors can. You can add vectors ONLY if they are in the same direction.
Vectors are combined by adding or subtracting their corresponding components. For two-dimensional vectors, you add/subtract the x-components together and the y-components together to get the resulting vector. For three-dimensional vectors, you perform the same process with the addition of the z-components.
When two vectors with different magnitudes and opposite directions are added :-- The magnitude of the sum is the difference in the magnitudes of the two vectors.-- The direction of the sum is the direction of the larger of the two vectors.
The question is not correct, because the product of any two vectors is just a number, while when you subtract to vectors the result is also a vector. So you can't compare two different things...
To subtract vectors, you can simply reverse the direction of the vector you are subtracting (by multiplying it by -1) and then add it to the original vector using vector addition. This process results in the difference vector, which represents the vector between the two initial vectors.
No, velocity and force vectors do not directly combine. Velocity is a vector that describes the rate at which an object changes its position, while force is a vector that causes an object to accelerate. The combination of force and velocity results in changes to an object's motion, such as acceleration or deceleration.
Graphically: By laying them head-to-tail (move one of the vectors without rotatint it, so that its tail coincides with the head of the other vector). Algebraically: Separate each vector into components, e.g. in 2 dimensions, separate it into components along the x-axis and along the y-axis. Add those components. To subtract, just add the opposite vector.
The three types of vectors are position vectors, displacement vectors, and force vectors. Position vectors represent the position of a point in space relative to a reference point, displacement vectors represent the change in position of an object, and force vectors represent the interaction between objects that can cause acceleration.
Vectors of the arthropod.
It's impossible as the addition of two vectors is commutative i.e. A+B = B+A.For subtraction of two vectors, you have to subtract a vector B from vector A.The subtraction of the vector B from A is equivalent to the addition of (-B) with A, i.e. A-B = A+(-B).
No