answersLogoWhite

0

Coplanar vectors lie within the same plane, meaning they can be represented by arrows with their tails at the same point. Collinear vectors, on the other hand, lie along the same line, meaning they have the same or opposite directions. In essence, coplanar vectors can be parallel or intersecting within the same plane, while collinear vectors are always parallel or antiparallel along the same line.

User Avatar

ProfBot

5mo ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
More answers

The term collinear is used to describe vectors which are scalar multiples of one another (they are parallel; can have different magnitudes in the same or opposite direction). The term coplanar is used to describe vectors in at least 3-space. Coplanar vectors are three or more vectors that lie in the same plane (any 2-D flat surface).

User Avatar

Wiki User

14y ago
User Avatar

Add your answer:

Earn +20 pts
Q: What is the difference between coplanar vectors and collinear vectors?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Geometry

What is the angle between the vectors A and -A when they are drawn from a common point?

180 degrees


How do you subtract vectors?

it depends on the method of subtraction. If the vectors are drawn graphically then you must add the negative of the second vector (same magnitude, different direction) tail to tip with the first vector. If the drawing is to scale, then the resultant vector is the difference. If you are subtracting two vectors <x1, y1> - <x2, y2> then you can subtract them component by component just like scalars. The same rules apply to 3-dimensional vectors


How do you find the area of a parallelogram using 2 vectors?

Given two vectors a and b, the area of a parallelogram formed by these vectors is:a x b = a*b * sin(theta) where theta is the angle between a and b, and where x is the norm/length/magnitude of vector x.


What is it when two vectors' dot product is one?

That fact alone doesn't tell you much about the original two vectors. It only says that (magnitude of vector-#1) times (magnitude of vector-#2) times (cosine of the angle between them) = 1. You still don't know the magnitude of either vector, or the angle between them.


What is the difference between the ''dot product'' and the ''cross product''?

Dot Product:Given two vectors, a and b, their dot product, represented as a ● b, is equal to their magnitudes multiplied by the cosine of the angle between them, θ, and is a scalar value.a ● b = ║a║║b║cos(θ)Cross Product:Given two vectors, a and b, their cross product, which is a vector, is represented as a X b and is equal to their magnitudes multiplied by the sine of the angle between them, θ, and then multiplied by a unit vector, n, which points perpendicularly away, via the right-hand rule, from the plane that a and b define.a X b = ║a║║b║sin(θ)n