answersLogoWhite

0


Best Answer

If the two roots are x = r1 and x = r2 then the quadratic equation is:

(x - r1)(x - r2) = x2 - (r1 + r2)x + r1r2 = 0

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you write quadratic equations using roots?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Geometry

Write an algorithm to find the root of quadratic equation?

Write an algorithm to find the root of quadratic equation


How do you write a quadratic equation using only solutions 10 and -2?

12


How many ways are there to solve a quadratic equation?

There are so far 8 common methods to solve quadratic equations:GraphingFactoring FOIL methodCompleting the square.Using the quadratic formula (derived from algebraic manipulation of "completing the square" method).The Diagonal Sum Method. It quickly and directly gives the 2 real roots in the form of 2 fractions. In fact, it can be considered as a shortcut of the factoring method. It uses the Rule of Signs for Real Roots in its solving process. When a= 1, it can give the 2 real roots quickly without factoring. Example. Solve x^2 - 39x + 108 = 0. The Rule of Signs indicates the 2 real roots are both positive. Write the factor-sets of c = 108. They are: (1, 108), (2, 54), (3, 36)...Stop! This sum is 36 + 3 = 39 = -b. The 2 real roots are 3 and 36. No needs for factoring! When a is not one, this new method selects all probable root-pairs, in the form of 2 fractions. Then it applies a very simple formula to see which root-pair is the answer. Usually, it requires less than 3 trials. If this new method fails, then this given quadratic equation can not be factored, and consequently the quadratic formula must be used. Please see book titled:"New methods for solving quadratic equations and inequalities" (Amazon e-book 2010).The Bluma MethodThe factoring AC Method (Youtube). This method is considerably improved by a "new and improved AC Method", recently introduced on Google or Yahoo Search.The new Transforming Method, recently introduced, that is may be the best and fastest method to solve quadratic equations. Its strong points are: simple, fast, systematic, no guessing, no factoring by grouping, and no solving the binomials. To know this new method, read the articles titled:"Solving quadratic equations by the new Transforming Method" on Google or Yahoo Search.BEST METHODS TO SOLVE QUADRATIC EQUATIONS. A. When the equation can't be factored, the best choice would be the quadratic formula. How to know if the equation can't be factored? There are 2 ways:1. Start solving by the new Transforming Method in composing factor pairs of a*c (or c). If you can't find the pair whose sum equals to (-b), or b, then the equation can't be factored.2. Calculate the Discriminant D = b^2 - 4ac. If D isn't a perfect square, then the equation can't be factored.B. When the equation can be factored, the new Transforming Method would be the best choice.


How do you write an equation that is parallel to a given line and passes through the given point?

Parallel straight line equations have the same slope but with different y intercepts


Write the volume of a cube 25cm on a side using an exponent. Then find the volume.?

The volume is 15,600 cm3

Related questions

Write an algorithm to find the root of quadratic equation?

Write an algorithm to find the root of quadratic equation


How do you write a poem on the roots of the quadratic equation?

2000X=Y2KoverZzz?


When the roots are equal of a quadratic equation?

Write the quadratic equation in the form ax2 + bx + c = 0 The roots are equal if and only if b2 - 4ac = 0. The expression, b2-4ac is called the [quadratic] discriminant.


Write an algorithm and draw a flowchart that will calculate the roots of quadratic equation?

dejene


Can you write a parody to Up We Go by Lights about the quadratic formula the discriminant and the nature of the roots?

No.


Can you write a parody to light's up we go about the quadratic formula discriminant and nature of the roots?

yes


What is the special cases of quadratic equation?

The standard form of a quadratic equation is: ax^2 + bx + c = 0. Depending on the values of the constants (a, b, and c), a quadratic equation may have 2 real roots, one double roots, or no real roots.There are many "special cases" of quadratic equations.1. When a = 1, the equation is in the form: x^2 + bx + c = 0. Solving it becomes solving a popular puzzle: find 2 numbers knowing their sum (-b) and their product (c). If you use the new Diagonal Sum Method (Amazon e-book 2010), solving is fast and simple.Example: Solve x^2 + 33x - 108 = 0.Solution. Roots have opposite signs. Write factor pairs of c = -108. They are: (-1, 108),(-2, 54),(-3, 36)...This sum is -3 + 36 = 33 = -b. The 2 real roots are -3 and 36. There is no needs for factoring.2. Tips for solving 2 special cases of quadratic equations.a. When a + b + c = 0, one real root is (1) and the other is (c/a).Example: the equation 5x^2 - 7x + 2 = 0 has 2 real roots: 1 and 2/5b. When a - b + c = 0, one real roots is (-1) and the other is (-c/a)Example: the equation 6x^2 - 3x - 9 = 0 has 2 real roots: (-1) and (9/6).3. Quadratic equations that can be factored.The standard form of a quadratic equation is ax^2 + bx + c = 0. When the Discriminant D = b^2 - 4ac is a perfect square, this equation can be factored into 2 binomials in x: (mx + n)(px + q)= 0. Solving the quadratic equation results in solving these 2 binomials for x. Students should master how to use this factoring method instead of boringly using the quadratic formula.When a given quadratic equation can be factored, there are 2 best solving methods to choose:a. The "factoring ac method" (You Tube) that determines the values of the constants m, n, p, and q of the 2 above mentioned binomials in x.b. The Diagonal Sum Method (Amazon ebook 2010) that directly obtains the 2 real roots without factoring. It is also considered as "The c/a method", or the shortcut of the factoring method. See the article titled" Solving quadratic equations by the Diagonal Sum Method" on this website.4. Quadratic equations that have 2 roots in the form of 2 complex numbers.When the Discriminant D = b^2 - 4ac < 0, there are 2 roots in the form of 2 complex numbers.5. Some special forms of quadratic equations:- quadratic equations with parameters: x^2 + mx - 7 + 0 (m is a parameter)- bi-quadratic equations: x^4 - 5x^2 + 4 = 0- equations with rational expression: (ax + b)/(cx + d) = (ex + f)- equations with radical expressions.


How would you go about solving a quadratic equation?

Write the quadratic equation in the form ax2 + bx + c = 0 then the roots (solutions) of the equation are: [-b &plusmn; &radic;(b2 - 4*a*c)]/(2*a)


Algorithm to find the roots of a quadratic equation?

The easiest way to write a generic algorithm is to simply use the quadratic formula. If it is a computer program, ask the user for the coefficients a, b, and c of the generic equation ax2 + bx + c = 0, then just replace them in the quadratic formula.


How do you write equations using numbers?

Just write something like 2+2=4, and your'e done!


What are some methods of solving quadratic equations?

Here are some methods you can use:* Trial and error. This works especially well if the solution is a small integer. * Factoring. You must first write the equation in such a form that you have zero on the right. * Completing the square. * Using the quadratic formula. The last two methods work in all cases. The quadratic formula is easier to work with in the general case.


What are the pros and cons of solving quadratics by using the quadratic formula?

One pro of using the quadratic formula is that it will produce complex (imaginary) roots just as easily as it can produce real roots. (Factoring with imaginary numbers is a kind of a nightmare!) Another pro to the quadratic formula is that it eliminates the frustrating guess-and-check process. A con of the quadratic formula is that, when it comes to more simple problems, it is usually more time-consuming. A lot of textbook problems are quite easy to factor in your head--it is often not worth the effort of plugging numbers into a long formula. A second con of the quadratic formula is that it is quite long--you might write out the formula, accidentally forget a letter, and whole thing is useless. It's much easier to see that your work is correct when you're factoring.