Yes its height is the same as its radius
Volume of Hemisphere = 2/3 * Pi * (radius)^3 Volume of Cone = 1/3 * Pi * (radius)^2 * height where Pi = 22/7 (approx)
The radius of the hemisphere is 12 units.
The radius of a cylinder is independent of its height.
2 to 1
No.
The radius IS given, since height of hemisphere = radius of hemisphere!
The radius is 32 because the height of the hemisphere (which is half of a sphere) is the same thing as the radius (which is half the length of the diameter); the radius is the distance from the center to any point on the edge or surface of the circle/sphere.
Can not be done without the 'Given' radius and height.
Suppose the radius of the sphere is R. The base of the cone is the same as the base of the hemisphere so the radius of the base of the cone is also R. The apex of the cone is on the surface of the hemisphere above the centre of the base. That is, it is at the "North pole" position. So the height of the cone is also the radius of the sphere = R. So the ratio is 1.
No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3 No because, Sphere : (4 * pi * cube of the radius)/3 Hemisphere: (2 * pi * cube of the radius)/3 Cylinder: pi * (square of the base radius) * height Cone: (pi * square of base radius * height)/3
The vertex of the cone would reach the very top of the sphere, so the height of the cone would be the same as the radius of the sphere. Therefore the ratio is 1:1, no calculation is necessary.
Volume of Hemisphere = 2/3 * Pi * (radius)^3 Volume of Cone = 1/3 * Pi * (radius)^2 * height where Pi = 22/7 (approx)
The radius of the hemisphere is 12 units.
A hemisphere with a radius of 3 has a volume of 56.55 units3
A hemisphere with a radius of two has a volume of 16.8 units3
Volume sphere = 4/3 πr³ = 4/3 π 7³ = 1372π/3 Volume cylinder = πr²h = 1372π/3 → r²h = 1372/3 So as long as the radius of the cylinder is related to its height by: radius = √(1372 / (3×height)) or height = 1372 / (3×radius²) You can have a cylinder of almost any size you want. Example sizes: radius 1, height 1372/3 radius 7, height 28/3 height 7, radius 14/√3 height 28/3, radius 7 height 49, radius √(28/3)
It depends on whether the height remains unchanged or increases in the same proportion as the radius.