answersLogoWhite

0


Best Answer

"All human beings are animals" is a true statement. All animals are not human beings.

User Avatar

Wiki User

9y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is an example of a true statement that has a false converse?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is a Converse statement?

A converse statement is a statement is switched to make the statement true or false. For example, "If it is raining, then we will not go to the beach" would be changed to, "If we go to the beach, then it is not raining."


What is an example of a false statement that has a true converse?

All four-sided polygons are squares. (False) Squares are all four-sided polygons. (True)


Is the converse of a true if-then statement never true?

Converses of a true if-then statement can be true sometimes. For example, you might have "If today is Friday, then tomorrow is Saturday," and "If tomorrow is Saturday, then today is Friday." Both the above conditional statement and its converse are true. However, sometimes a converse can be false, such as: "If an animal is a fish, then it can swim." and "If an animal can swim, it is a fish." The converse is not true, as some animals that can swim (such as otters) are not fish.


is this statement true or falseThe inverse is the negation of the converse.?

false


Is the converse of a true conditional statement always false?

No. Consider the statement "If I'm alive, then I'm not dead." That statement is true. The converse is "If I'm not dead, then I'm alive.", which is also true.


Is the Converse of a false statement always false?

Let's take an example.If it is raining (then) the match will be cancelled.A conditional statement is false if and only if the antecedent (it is raining) is true and the consequent (the match will be cancelled) is false. Thus the sample statement will be false if and only if it is raining but the match still goes ahead.By convention, if the antecedent is false (if it isn't raining) then the statement as a whole is considered true regardless of whether the match takes place or not.To recap: if told that the sample statement is false, we can deduce two things: It is raining is a true statement, and the match will be cancelled is a false statement. Also, we know a conditional statement with a false antecedent is always true.The converse of the statement is:If the match is cancelled (then) it is raining.Since we know (from the fact that the original statement is false) that the match is cancelled is false, the converse statement has a false antecedent and, by convention, such statements are always true.Thus the converse of a false conditional statement is always true. (A single example serves to show it's true in all cases since the logic is identical no matter what specific statements you apply it to.)If you are familiar with truth tables, the explanation is much easier. Here is the truth table for A = X->Y (i.e. A is the statement if X then Y) and B = Y->X (i.e. B is the converse statement if Y then X).X Y A BF F T TF F T TT F F TF T T FLooking at the last two rows of the A and B columns, when either of the statements is false, its converse is true.


What is the converse of the contrapositive of a statement?

Look at the statement If 9 is an odd number, then 9 is divisible by 2. The first part is true and second part is false so logically the statement is false. The contrapositive is: If 9 is not divisible by 2, then 9 is not an odd number. The first part is true, the second part is false so the statement is true. Now the converse of the contrapositive If 9 is not an odd number, then 9 is not divisible by two. The first part is false and the second part is true so it is false. The original statement is if p then q,the contrapositive is if not q then not p and the converse of that is if not p then not q


An example of paradox?

One classic example of a paradox is the "liar paradox," which revolves around a statement that cannot consistently be true or false. An example would be the statement "This statement is false." If the statement is true, then it must be false, but if it is false, then it must be true, creating a paradoxical situation.


What are some examples of a conditional statement?

A simple example of a conditional statement is: If a function is differentiable, then it is continuous. An example of a converse is: Original Statement: If a number is even, then it is divisible by 2. Converse Statement: If a number is divisible by 2, then it is even. Keep in mind though, that the converse of a statement is not always true! For example: Original Statement: A triangle is a polygon. Converse Statement: A polygon is a triangle. (Clearly this last statement is not true, for example a square is a polygon, but it is certainly not a triangle!)


What is an example of paradoxes?

The below statement is false. The above statement is true. I am lying. I am lying when I say I am lying.


If a statement is true is it converse also true?

Not necessarily. If the statement is "All rectangles are polygons", the converse is "All polygons are rectangles." This converse is not true.


Is this statement true or falseThe Converse of the Hinge Theorem can be used to determine exact measures of angles?

false