It is an if and only if (often shortened to iff) is usually written as p <=> q. This is also known as Equivalence. If you have a conditional p => q and it's converse q => p we can then connect them with an & we have: p => q & q => p. So, in essence, Equivalence is just a shortened version of p => q & q => p .
The statement in which the hypothesis becomes the conclusion and vice-versa is called the Converse.
Disjunction
compound statement
Such a statement is called a theorem.true
A theorem (or lemma).
this statement is called the converse.. ex: if the sky is blue, then the sun is out. converse: if the sun is out, then the sky is blue.
The statement in which the hypothesis becomes the conclusion and vice-versa is called the Converse.
Disjunction
Hypothesis followed by a conclusion is called an If-then statement or a conditional statement.
A conditional Statement.
No, not always. It depends on if the original biconditional statement is true. For example take the following biconditional statement:x = 3 if and only if x2 = 9.From this biconditional statement we can extract two conditional statements (hence why it is called a bicondional statement):The Conditional Statement: If x = 3 then x2 = 9.This statement is true. However, the second statement we can extract is called the converse.The Converse: If x2=9 then x = 3.This statement is false, because x could also equal -3. Since this is false, it makes the entire original biconditional statement false.All it takes to prove that a statement is false is one counterexample.
by switching the truth values of the hypothesis and conclusion, it is called the contrapositive of the original statement. The contrapositive of a true conditional statement will also be true, while the contrapositive of a false conditional statement will also be false.
Conditional statements are also called "if-then" statements.One example: "If it snows, then they cancel school."The converse of that statement is "If they cancel school, then it snows."The inverse of that statement is "If it does not snow, then they do not cancel school.The contrapositive combines the two: "If they do not cancel school, then it does not snow."In mathematics:Statement: If p, then q.Converse: If q, then p.Inverse: If not p, then not q.Contrapositive: If not q, then not p.If the statement is true, then the contrapositive is also logically true. If the converse is true, then the inverse is also logically true.
Conditional statements are used in programming to make decisions based on certain conditions. They allow the program to execute different code blocks depending on whether a condition is true or false. Common conditional statements include if, else, and else if.
umm im pretty sure they were called converse
if it was a written statement yes she can be called to court
Conditional ConnectivesThe statement `if p then q' is called a conditional statement and is written logically as p ! q.(This asserts that the truth of p guarantees the truth of q.)p ! q can also be read as `p implies q', where p is sometimes called the antecedent and qtheconsequent.Examples:p: It is raining.q: I get wet.p ! q: If it is raining, then I get wet.s: It is Sunday.w: I have to work today.s ! w: If it is Sunday, then I have to work today.»s ! w: If it is not Sunday, then I have to work today.s !»w: If it is Sunday, I do not have to work today.(s ^ p) !»w: If it is Sunday and it's raining, then I don't have to work today.To examine the truth or falsity of p ! q, suppose p and q are the following propositionsp: I win the lottery,q: I will buy you a car.Then p ! q is the statement `If I win the lottery, then I will buy you a car'.