0. There is no circle so no shaded area of a circle!
Find the area of the shaded sector. radius of 3 ...A+ = 7.07
(pi * radius squared) * ( sector angle / 360 )
If the angle at the centre is 60° then the sector occupies 1/6 of the circle as 60/360 = 1/6. The area of a circle = πr² The area of the sector = 1/6.π3² = 9/6.π = 4.712 square units.
if a circle has a radius of 12cm and a sector defined by a 120 degree arc what is the area of the sector
The area is r^2*x where r is the radius of the circle and x is the angle measured in radians. If you are still working in degrees then Area = (y/180)*r^2, where the angle is y.
Find the area of the shaded sector. radius of 3 ...A+ = 7.07
To find the area of the shaded sector, we first need to determine the area of the entire circle with a radius of 12, which is calculated using the formula (A = \pi r^2). Thus, the area of the entire circle is (A = \pi (12^2) = 144\pi). If the not shaded area is 100, the area of the shaded sector is then (144\pi - 100). Therefore, the area of the shaded sector is approximately (144\pi - 100) square units.
To find the area of a shaded sector in a circle, you need the radius and the angle of the sector. Assuming the radius of the circle is 18 cm, the area of the entire circle is given by the formula (A = \pi r^2), which equals approximately (1017.88 , \text{cm}^2). If you know the angle of the sector in degrees, you can calculate the area of the sector using the formula (A_{sector} = \frac{\theta}{360} \times A_{circle}), where (\theta) is the angle of the sector. Without the angle, I cannot provide the exact area of the shaded sector.
(pi * radius squared) * ( sector angle / 360 )
19.23
A circle with a radius of 135 units has an area of 57,255.53 square units.
To find the area of a shaded sector with a 180-degree angle, you can use the formula for the area of a sector: ( \text{Area} = \frac{\theta}{360} \times \pi r^2 ), where ( \theta ) is the angle in degrees and ( r ) is the radius. For a 180-degree sector, the formula simplifies to ( \text{Area} = \frac{1}{2} \pi r^2 ). Thus, the area of the shaded sector is half the area of the full circle with radius ( r ).
The area of the shaded sector is: 245.7 square units.
The area of the shaded region can be gotten by multiplying the area of the circle by the subtended angle of the sector.
Area of sector = 60/360ths ie 1/6th of the total area; Total area = 12 x 12 x 3.14 = 452.16 cm2 Area of sector = 452.16/6 = 75.36 cm2
Assuming the shaded sector has the angle of 100o (without seeing the diagram, it could be the other sector, ie the one with an angle of 260o): The sector is 1000 ÷ 360o = 5/18 of the circle. Thus its area is 5/18 that of the circle: area = 5/18 x π x 82 ~= 55.9 units2
We would need to know how big the circle is. And what is the shaded part looks like. That will help us figure out the answer.