answer this question please
120
no an isosceles triangle can not be a right angle triangle because with an isosceles the two sides meet at a point creating a vertisce which a right angle triwngle does not have hope this helpsImproved Answer:-Yes it can providing the interior angles are 90 45 45 degrees which will give a triangle of two equal sides making it both an isosceles triangle and a right angle triangle.
You have an isosceles triangle, and a circle that is drawn around it. You know the vertex angle of the isosceles triangle, and you know the radius of the circle. If you use a compass and draw the circle according to its radius, you can begin your construction. First, draw a bisecting cord vertically down the middle. This bisects the circle, and it will also bisect your isosceles triangle. At the top of this cord will be the vertex of your isosceles triangle. Now is the time to work with the angle of the vertex. Take the given angle and divide it in two. Then take that resulting angle and, using your protractor, mark the angle from the point at the top of the cord you drew. Then draw in a line segment from the "vertex point" and extend it until it intersects the circle. This new cord represents one side of the isosceles triangle you wished to construct. Repeat the process on the other side of the vertical line you bisected the circle with. Lastly, draw in a line segment between the points where the two sides of your triangle intersect the circle, and that will be the base of your isosceles triangle.
In geometry, an equilateral polygon is a polygon which has all sides of the same length. For instance, an equilateral triangle is a triangle of equal edge lengths. All equilateral triangles are similar to each other, and have 60 degree internal angles. : Any equilateral quadrilateral is a rhombus, which includes the square. : An equilateral polygon which is cyclic (its vertices are on a circle) is a regular polygon. Not all equilateral polygons are convex: all equilateral polygons with more than four sides, such as the pentagon, can be concave. Viviani's theorem holds for equiangular polygons (and also holds for equilateral ones): : The sum of distances from a point to the side lines of an equiangular [or equilateral] polygon does not depend on the point and is that polygon's invariant.
An equilateral triangle has 3 lines of symmetry which perpendicularly bisects each of its vertices
A set of three points equidistant around a point is called an equilateral triangle. In geometry, an equilateral triangle is a triangle in which all three sides are equal in length. The angles in an equilateral triangle are also equal, each measuring 60 degrees.
answer this question please
An ISOSCELES TRiangle. The line of symmetry is from the angle of the two equal adjacent sides, to the mid-point of the NON-equal side.
a triangle with two sides the same length i forgot what the proper name for it was'Equilateral triangle' is the fancy name. If two sides of a triangle are the same length then two of the angles should also be the same size. Woh Sorry I meant Isosceles triangle. (thanks whoever you are) I can't believe I got that wrong, how embarrassing.- yeah hahano, a equilateral triangle has 3 angles with all of them equal. that's the point of the word Equilateral so no its not a equilateral triangle and sorry to the guy who did the other thing
An equilateral triangle, with the point facing up. Δ
120
no an isosceles triangle can not be a right angle triangle because with an isosceles the two sides meet at a point creating a vertisce which a right angle triwngle does not have hope this helpsImproved Answer:-Yes it can providing the interior angles are 90 45 45 degrees which will give a triangle of two equal sides making it both an isosceles triangle and a right angle triangle.
Yes, but only in an equilateral triangle.
The incentre - except in an equilateral triangle where it coincides with the centroid (for example).
Yes, every isosceles triangle has at least one line of symmetry, usually drawn down the middle from the top point, down in the middle of the triangle's base.
Sure. That's true of a median in every isosceles triangle, and every median in an equilateral triangle. In fact it is true for any median of any triangle. The two parts may not be the same shapes but they will have the same area. That is why the point where the three medians meet (centroid) is the centre of mass of a triangular lamina of uniform thickness.