Then it would be a false statement because an isosceles and an equilateral triangle have different geometrical properties as in regards to the lengths of their sides.
by switching the truth values of the hypothesis and conclusion, it is called the contrapositive of the original statement. The contrapositive of a true conditional statement will also be true, while the contrapositive of a false conditional statement will also be false.
Contrapositive
false
False
The contrapositive would be: If it is not an isosceles triangle then it is not an equilateral triangle.
Then it would be a false statement because an isosceles and an equilateral triangle have different geometrical properties as in regards to the lengths of their sides.
Figure B. equilateral triangle (small circle) inside of isosceles triangle (big cirlce)
A false statement
If a triangle is isosceles, then it is equilateral. To find the converse of a conditional, you switch the antecedent ("If ____ ...") and consequent ("... then ____."). (Of course, if not ALL isosceles triangles were equilateral, then the converse would be false.)
It's Figure A
Figure B apex
If a conditional statement is true, then so is its contrapositive. (And if its contrapositive is not true, then the statement is not true).
by switching the truth values of the hypothesis and conclusion, it is called the contrapositive of the original statement. The contrapositive of a true conditional statement will also be true, while the contrapositive of a false conditional statement will also be false.
The statement "All red objects have color" can be expressed as " If an object is red, it has a color. The contrapositive is "If an object does not have color, then it is not red."
Contrapositive
A Contrapositive statement is logically equivalent.