if you have two triangles you can prove them congruent by stating that all of the sides are congruent, hence (SSS=Side, Side, Side). You can also do the same by stating SAS (Side, Angle, Side) or ASA (Angle, Side, Angle). Using these methods, everything must be in order and consecutive to prove the triangles congruent
good question
Chat with our AI personalities
sbr in sss meaning
SSS
Here is the answer to your query. Consider two ∆ABC and ∆PQR. In these two triangles ∠B = ∠Q = 90�, AB = PQ and AC = PR. We can prove the R.H.S congruence rule i.e. to prove ∆ABC ≅ ∆PQR We need the help of SSS congruence rule. We have AB = PQ, and AC = PR So, to prove ∆ABC ≅ ∆PQR in SSS congruence rule we just need to show BC = QR Now, using Pythagoras theorems in ∆ABC and ∆PQR Now, in ∆ABC and ∆PQR AB = PQ, BC = QR, AC = PR ∴ ∆ABC ≅ ∆PQR [Using SSS congruence rule] So, we have AB = PQ, AC = PR, ∠B = ∠Q = 90� and we have proved ∆ABC ≅ ∆PQR. This is proof of R.H.S. congruence rule. Hope! This will help you. Cheers!!!
SSS
SSS Similarity, SSS Similarity Theorem, SSS Similarity Postulate