If 16 - 7d = -3 d + 2, collecting like terms with "d" on the left side yields -4d = -14, or d = 14/4 = 7/2.
The given sequence is an arithmetic progression with common difference d = 4 and first term a = 3.Sum of n terms of an A.P. is given by: Sn = n/2 x [2a + (n-1)d]We need to find sum of 11 terms so n = 11.Putting value of n, a and d we get:S11 = 11/2 x [2x3 + (11 - 1) x 4]S11 = 11/2 x [6 + 40]S11 = 11/2 x 46 = 11 x 23 = 253
-11
D=26.
4(9)-11=25 2(9)+7=25 d=9
-5
If 16 - 7d = -3 d + 2, collecting like terms with "d" on the left side yields -4d = -14, or d = 14/4 = 7/2.
The given sequence is an arithmetic progression with common difference d = 4 and first term a = 3.Sum of n terms of an A.P. is given by: Sn = n/2 x [2a + (n-1)d]We need to find sum of 11 terms so n = 11.Putting value of n, a and d we get:S11 = 11/2 x [2x3 + (11 - 1) x 4]S11 = 11/2 x [6 + 40]S11 = 11/2 x 46 = 11 x 23 = 253
-11
D=26.
4(9)-11=25 2(9)+7=25 d=9
11+16=8+ d. In this problem, you should move all numbers to one side. Like this: 11+16-8=d. Now combine, and you get the answer, which is: d=19.
8d of course
The fraction is 35/56.The way to find it is as follows:1) n/d = 5/82) (n-5) / (d+4) = 1/23) n = (5/8)*d [rearrange (1)]4) 2*(n-5) = (d+4) [rearrange (2)]5) 2*n - 10 = d + 4 [rearrange (4)]6) 2*n = d + 14 [rearrange (5)]7) 2*((5/8)*d) = d + 14 [substitue (3) into (6)]8) (10/8)*d = d+14 [rearrange (7)]9) (10/8)*d - d = 14 [rearrange (8)]10) (10/8)*d - (8/8)*d = 14 [rearrange (9)]11) (2/8)*d = 14 [rearrange (10)]12) d = 14 / (2/8) = 14 * 8/2 [rearrange (11)]13) d = 112/2 = 56 [simplify (12)]14) n = (5/8)*56 [substitute (13) into (3)]15) n = 280/8 = 35 [simplify (14)]16) THE ANSWER IS n/d = 35/56 [substitute (13) and (15) into the definition of the fraction]
1.a 2.d 3.b 4.c 5.c
Well, here's how you play the the intro to sweet child o' Mine on electric guitar Riff-1 e----------------14---13----- B------14--------------------- G---------13-11---13---13-- x2 D---11----------------------- A----------------------------- E----------------------------- Riff-2 e----------------14---13----- B------14--------------------- G---------13-11---13---13-- x2 D---13----------------------- A----------------------------- E----------------------------- Riff-3 e-----------------14---13----- B------14--------------------- G---11----13-11---13---13-- x2 D---------------------------- A----------------------------- E----------------------------- Riff-1 x2 Riff-2 x2 Riff-3 x2 Riff-1 x4 Riff-2 x2 Riff-3 x2 Riff-4 e---11--------11---13---14---13---11---------- B--------14-----------------------------------14-- G-----13---13---13---13---13---13---13---13-- D------------------------------------------------ A------------------------------------------------ E------------------------------------------------ Well, that's the intro, hope it helps
That depends what the value of d is.