8
The answer will depend on what, if anything, the line segments have to do with the ellipse.
24
The length of the major axis of an ellipse is determined by the lengths of its semi-major and semi-minor axes. In this case, if the red line segment represents the semi-major axis (8), the length of the major axis would be twice that, which is 16. The blue line segment, being shorter (4), represents the semi-minor axis. Thus, the major axis of the ellipse is 16 units long.
The length of the major axis of an ellipse is equal to twice the length of the semi-major axis. If the semi-major axis is denoted as "a," then the major axis length is 2a. This axis is the longest diameter of the ellipse, stretching from one end of the ellipse to the other through the center.
An ellipse is the set of each and every point in a place such that the sum of the distance from the foci is constant, Major Axis of the ellipse is the part from side to side the center of ellipse to the larger axis, or the length of that sector. The major diameter is the largest diameter of an ellipse. Below equation is the standard ellipse equation: X2/a + Y2/b = 1, (a > b > 0)
The answer will depend on what, if anything, the line segments have to do with the ellipse.
24
10
26
21
12
24
The Answer Is 9.5
4 not 9..... ANSWER FOR APEX 10 (:
4 11 10.8
An ellipse is the set of each and every point in a place such that the sum of the distance from the foci is constant, Major Axis of the ellipse is the part from side to side the center of ellipse to the larger axis, or the length of that sector. The major diameter is the largest diameter of an ellipse. Below equation is the standard ellipse equation: X2/a + Y2/b = 1, (a > b > 0)
Is it an invisible ellipse ... I can't see it