The answer will depend on what, if anything, the line segments have to do with the ellipse.
24
The length of the major axis of an ellipse is determined by the lengths of its semi-major and semi-minor axes. In this case, if the red line segment represents the semi-major axis (8), the length of the major axis would be twice that, which is 16. The blue line segment, being shorter (4), represents the semi-minor axis. Thus, the major axis of the ellipse is 16 units long.
8
The length of the major axis of an ellipse is equal to twice the length of the semi-major axis. If the semi-major axis is denoted as "a," then the major axis length is 2a. This axis is the longest diameter of the ellipse, stretching from one end of the ellipse to the other through the center.
Formula: a = pi * r1 * r2 a=area of the ellipser1=length of the semi-major axisr2=length of the semi-minor axispi=Î , approximately 3.1415927
24
10
26
21
12
24
The length of the major axis of an ellipse is determined by the lengths of its semi-major and semi-minor axes. In this case, if the red line segment represents the semi-major axis (8), the length of the major axis would be twice that, which is 16. The blue line segment, being shorter (4), represents the semi-minor axis. Thus, the major axis of the ellipse is 16 units long.
The Answer Is 9.5
8
4 not 9..... ANSWER FOR APEX 10 (:
4 11 10.8
The length of the major axis of an ellipse is equal to twice the length of the semi-major axis. If the semi-major axis is denoted as "a," then the major axis length is 2a. This axis is the longest diameter of the ellipse, stretching from one end of the ellipse to the other through the center.