(2, -1)
Their graphs are.
(x4 - 2x3 + 2x2 + x + 4) / (x2 + x + 1)You can work this out using long division:x2 - 3x + 4___________________________x2 + x + 1 ) x4 - 2x3 + 2x2 + x + 4x4 + x3 + x2-3x3 + x2 + x-3x3 - 3x2 - 3x4x2 + 4x + 44x2 + 4x + 40R∴ x4 - 2x3 + 2x2 + x + 4 = (x2 + x + 1)(x2 - 3x + 4)
3x+56 = 2x+4 3x-2x = 4-56 x = -52
x=6
(2, -1)
Their graphs are.
(x4 - 2x3 + 2x2 + x + 4) / (x2 + x + 1)You can work this out using long division:x2 - 3x + 4___________________________x2 + x + 1 ) x4 - 2x3 + 2x2 + x + 4x4 + x3 + x2-3x3 + x2 + x-3x3 - 3x2 - 3x4x2 + 4x + 44x2 + 4x + 40R∴ x4 - 2x3 + 2x2 + x + 4 = (x2 + x + 1)(x2 - 3x + 4)
3x+56 = 2x+4 3x-2x = 4-56 x = -52
-3x+14 = -4 -3x = -4-14 -3x = -18 x = 6
x=6
6x+4=3x+12 => 6x-3x=12-4 => 3x=8 => x=8/3=2.666...
3x+8 = 12 3x = 4 x = 4/3
5x - 4 = 3x + 6 5x - 3x = 6 + 4 2x = 10 x = 5
(3x4 + 2x3 - x2 - x - 6)/(x2 + 1)= 3x2 + 2x - 4 + (-3x - 2)/(x2 + 1)= 3x2 + 2x - 4 - (3x + 2)/(x2 + 1)where the quotient is 3x2 + 2x - 4 and the remainder is -(3x + 2).
2x3 + 8x2 + 3x + 12 = (2x3 + 8x2) + (3x + 12) = 2x2(x + 4) + 3(x + 4) = (x + 4)(2x2 + 3) Since you have asked this question I am assuming that you are not yet at a level where you might want (2x2 + 3) factorised into its imaginary factors.
1