Chat with our AI personalities
To determine if triangles ABC and DEF are similar, we can use the side lengths given. The ratios of the corresponding sides must be equal. For triangle ABC, the sides are AB = 4, AC = 6, and the unknown BC, while for triangle DEF, the sides are DE = 8, DF = 12, and the unknown EF. The ratio of AB to DE is 4/8 = 1/2, and the ratio of AC to DF is 6/12 = 1/2, which are equal. Therefore, triangles ABC and DEF are similar by the Side-Side-Side (SSS) similarity criterion.
If the sides AB, BC and CA of triangle ABC correspond to the sides DE, EF and FD of triangle DEF, then the two triangles are congruent if:AB = DE, BC = EF and CA = FD (SSS)AB = DE, BC = EF and angle ABC = angle DEF (SAS)AB = DE, angle ABC = angle DEF, angle BCA = angle EFD (ASA)If the triangles are right angled at A and D so that BC and EF are hypotenuses, then the triangles are congruent ifBC = EF and AB = DE (RHS)BC = EF and angle ABC = angle DEF (RHA).
The sum of the two angles is 360. So angle ABC = 120 degrees.
Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals" etc. There is, therefore, no visible symbol between ABC and DEF (<, =, >, ≠ etc). Furthermore, there is no information as to whether ABC is an angle, a triangle, an arc.
Nothing else, the angle-angle-side is sufficient to show the triangles are congruent. With two corresponding angles are equal, the third angles in the triangles by definition (the sum of the three angles in a triangle is 180o) must be equal making the triangles similar. If a corresponding pair of sides are also equal, then the other two corresponding pairs of sides will be equal.