answersLogoWhite

0

All For 1 and 1 For All

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: A f 1 and 1 f a?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How To Solve A Function F(x) Has These Properties The Domain Of F Is The Set Of Natural Numbers F (1)1 F (x plus 1)f(x) plus 3x(x plus 1) plus 1 A. Determine F (2) F(3) F (4) F (5) F(6) THANKS!!!!!!?

The function (sequence generator) f(x) with x∈ℕ has been defined as a recursive function (sequence), with the initial value defined for some x, ie starting form some some natural number (in this case 1), the value of the function (sequence) is given (in this case f(1) = 1), and each successive value of the function (sequence) is defined in terms of the current value f(x+1) = f{x} + g(x) where g(x) is a function with g(x) = 3x(x + 1).f(x + 1) = f(x) + 3x(x + 1)f(1) = 1→ f(2) = f(1 + 1) = f(1) + (3×1)(1 + 1) = 1 + 3×2 = 1 + 6 = 7→ f(3) = f(2 + 1) = f(2) + (3×2)(2 + 1) = 7 + 6×3 = 7 + 18 = 25I'll let you evaluate the rest.Hint:f(4) = f(3 + 1) = f(3) + (3×3)(3 + 1)f(5) = f(4 + 1) = f(4) + ...f(6) = f(5 + 1) = f(5) + ...


When was Pierre De fermat's last theorem created?

PIERRE DE FERMAT's last Theorem. (x,y,z,n) belong ( N+ )^4.. n>2. (a) belong Z F is function of ( a.) F(a)=[a(a+1)/2]^2 F(0)=0 and F(-1)=0. Consider two equations F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) We have a string inference F(z)=F(x)+F(y) equivalent F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) infer F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) infer F(z-x-2)=F(x-x-2)+F(y-x-2) we see F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) give z=y and F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) give z=/=y. So F(z-x-1)=F(x-x-1)+F(y-x-1) don't infer F(z-x-2)=F(x-x-2)+F(y-x-2) So F(z)=F(x)+F(y) don't infer F(z-1)=F(x-1)+F(y-1) So F(z)=F(x)+F(y) is not equivalent F(z-1)=F(x-1)+F(y-1) So have two cases. [F(x)+F(y)] = F(z) and F(x-1)+F(y-1)]=/=F(z-1) or vice versa So [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). Or F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). We have F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. So x^3+y^3=/=z^3. n>2. .Similar. We have a string inference G(z)*F(z)=G(x)*F(x)+G(y)*F(y) equivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) we see G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) give z=y. and G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 infer G(x)>0. give z=/=y. So G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) don't infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) don't infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) is not equiivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So have two cases [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) and [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) or vice versa. So [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. Or G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] We have x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] So x^n+y^n=/=z^n Happy&Peace. Trần Tấn Cường.


What is the integral of f divided by the quantity 1 minus f with respect to x where f is a function of x?

∫ f(x)/(1 - f(x)) dx = -x + ∫ 1/(1 - f(x)) dx


7 plus f - 21 equals -20?

7 + f - 21 = -20 Therefore, 7 + f = 1 f = 1 - 7 f = -6


What is the reciprocal of f over b?

b/f. reciprocal of x means 1/x, i.e. 1/f/b is b/f