No
Chat with our AI personalities
First, find the LCM (Least Common Multiple) of the three intercepts. Second, divide the LCM by the X-Intercept. Repeat for the Y- and Z-Intercepts. Third, take the three values, and put them together like this: (LCM/X-Intercept)x+(LCM/Y-Intercept)y+(LCM/Z-Intercept)z=LCM If it need it, you can simplify it. For example, if you have a plane with the intercepts (5, 0, 0), (0, 2, 0), and (0, 0, 3), the the LCM would be 30, so you would have: (30/5)x+(30/2)y+(30/3)z=30 6x+15y+10z=30
/* To Get The LCM Of 15 Nos in C++/ C(Just Change cin to scanf & cout to printf) */ /* Developed By Kishore Kr. Banerjee - papillon_kish@yahoo.com*/ #include <iostream.h> #include <conio.h> main() { int num[15],i,j,n1,n2,LCM,flag; clrscr(); for(i=0;i<15;i=i+1) { cout<<"Enter No - "<<i+1<<"="; cin>>num[i]; } clrscr(); n1=num[0]; for(i=1;i<15;i=i+1) { n2=num[i]; LCM=1; for(j=1;n1%j==0n2%j==0;j=j+1) { if(n1%j==0) { n1=n1/j; flag=1; } if(n2%j==0) { n2=n2/j; flag=1; } if(flag==1) { LCM=LCM*j; } } LCM=LCM*n1*n2; n1=LCM; } cout<<"the LCM ="<<LCM; getch(); }
None. The Least Common Multiple (LCM) for 3 7 is 21.
/* Program to find LCM/HCF of 15 Nos in C++/ C (replace cin with scanf & cout with printf for c) */ /* Developed by - Kishore Kr. Banerjee - papillon_kish@yahoo.com */ #include <iostream.h> #include <conio.h> main() { int num[3],i,j,p,q,tmp,n1,n2,LCM,rem,flag; clrscr(); for(i=0;i<3;i=i+1) { cout<<"Enter No - "<<i+1<<"="; cin>>num[i]; } clrscr(); n1=num[0]; p=n1; for(i=1;i<3;i=i+1) { n2=num[i]; /* Finding HCF */ q=n2; if(p<q) { tmp=q; q=p; p=tmp; } while(p%q!=0) { rem=p%q; q=p; p=rem; if(p<q) { tmp=q; q=p; p=tmp; } } /*finding LCM */ LCM=1; for(j=1;n1%j==0n2%j==0;j=j+1) { if(n1%j==0) { n1=n1/j; flag=1; } if(n2%j==0) { n2=n2/j; flag=1; } if(flag==1) { LCM=LCM*j; } } LCM=LCM*n1*n2; n1=LCM; } cout<<"the LCM ="<<LCM; cout<<"the hcf ="<<q; getch(); } ----- int gcd (int a, int b) { . int tmp; . if (a<0) a= -a; . if (b<0) b= -b; . if (a<b) tmp= a, a= b, b= tmp; . while (b) { . . tmp= a%b; . . a= b; . . b= tmp; . } . return a; } int gcd_n (int n, const int *vect) { . int i, gcdtmp; . for (i=0, gcdtmp=0; i<n && gcdtmp!=1; ++i) . . gcdtmp= gcd (gcdtmp, vect[i]); . return gcdtmp; } int LCM (int a, int b) { . int d= gcd (a, b); . if (d==0) return d; . else return a/d*b; } int lcm_n (int n, const int *vect) { . int i, lcmtmp; . for (i=0, lcmtmp=1; i<n; ++i) . . lcmtmp= LCM (lcmtmp, vect[i]); . return lcmtmp; }
LCM of 5, 8, 10, and 12. 5 = 5 8 = 23 10 = 2 x 5 12 = 23 x 3 LCM = 23 x 3 x 5 = 120 Or, since 5 is the only odd number, the LCM will end with 0. One of the multiples of 12 ending with 0 is 60 or 120. Since 60 is not divided evenly by 8, then 120 is the LCM.