No.
Yes. For instance, the 2-dimensional vector (1,0) has length sqrt(1+0) = 1 A vector only has zero magnitude when all its components are 0.
A vector comprises its components, which are orthogonal. If just one of them has magnitude and direction, then the resultant vector has magnitude and direction. Example:- If A is a vector and Ax is zero and Ay is non-zero then, A=Ax+Ay A=0+Ay A=Ay
Yes, the component of a non-zero vector can be zero. A non-zero vector can have one or more components equal to zero while still having a non-zero magnitude overall. For example, in a two-dimensional space, the vector (0, 5) has a zero component in the x-direction but is still a non-zero vector since its y-component is non-zero.
Huh?I have been kicking around your question in my mind for five minutes trying to figure out an answer or a way to edit your question into an unambiguous form, but I'm stumped. I don't know what you mean by "zero component along a line."If you look at the representation of a vector on paper using a Cartesian coordinate system -- in other words, one using x and y axes -- the orthogonal components of the vector are the projections of the vector on the x and y axes. If the vector is parallel to one of the axes, its projection on the other axis will be zero. But the vector will still have a non-zero magnitude. Its entire magnitude will project on only one axis.But a vector must have magnitude AND direction. And if it has zero magnitude, its direction cannot be determined.Still trying to make heads or tails out of your question.......If you draw a random vector on a Cartesian grid, it will have an x component and a y component, which are both projections of the original vector upon the axes. However, it could also be represented by projecting it onto a new set of orthogonal axes -- call them x' and y' -- where the x' axis is oriented to be parallel to the original vector and the y' vector is perpendicular to it. In that case, the x' component will have a magnitude equal to the magnitude of the original vector -- in other words, a non-zero value along a line parallel to the x' axis -- and a zero magnitude in the y' direction.
Depends on the situation. Vector A x Vector B= 0 when the sine of the angle between them is 0 Vector A . Vector B= 0 when the cosine of the angle between them is 0 Vector A + Vector B= 0 when Vectors A and B have equal magnitude but opposite direction.
Yes. For instance, the 2-dimensional vector (1,0) has length sqrt(1+0) = 1 A vector only has zero magnitude when all its components are 0.
A vector comprises its components, which are orthogonal. If just one of them has magnitude and direction, then the resultant vector has magnitude and direction. Example:- If A is a vector and Ax is zero and Ay is non-zero then, A=Ax+Ay A=0+Ay A=Ay
A vector, starting at the origin and going to point (-2,0):Since there is no y-component, the magnitude is the absolute value of the x componentmagnitude = 2magnitude of a vector = sqrt( X2 + Y2) = sqrt ((-2)2 + 02) = sqrt(4) = 2where X & Y are the x-component & y-component of the vector.
B could be either greater than, lesser than or equal to A. 7 +(-7) = 0 (-7) = 7 = 0 0 + 0 = 0
The magnitude of a vector is 0 if the magnitude is given to be 0.The magnitude of the resultant of several vectors in n-dimensional space is 0 if and only if the components of the vectors sum to 0 in each of a sewt of n orthogonal directions.
Yes, the component of a non-zero vector can be zero. A non-zero vector can have one or more components equal to zero while still having a non-zero magnitude overall. For example, in a two-dimensional space, the vector (0, 5) has a zero component in the x-direction but is still a non-zero vector since its y-component is non-zero.
The zero vector has no magnitude. v= Io + Jo + k0 has no magnirude |V|= sqroot(o^2 + 0^2 + 0^2)=0.
The null vector is a special case where both magnitude and direction are undefined. This vector represents a point in space, rather than a physical quantity with magnitude and direction.
Huh?I have been kicking around your question in my mind for five minutes trying to figure out an answer or a way to edit your question into an unambiguous form, but I'm stumped. I don't know what you mean by "zero component along a line."If you look at the representation of a vector on paper using a Cartesian coordinate system -- in other words, one using x and y axes -- the orthogonal components of the vector are the projections of the vector on the x and y axes. If the vector is parallel to one of the axes, its projection on the other axis will be zero. But the vector will still have a non-zero magnitude. Its entire magnitude will project on only one axis.But a vector must have magnitude AND direction. And if it has zero magnitude, its direction cannot be determined.Still trying to make heads or tails out of your question.......If you draw a random vector on a Cartesian grid, it will have an x component and a y component, which are both projections of the original vector upon the axes. However, it could also be represented by projecting it onto a new set of orthogonal axes -- call them x' and y' -- where the x' axis is oriented to be parallel to the original vector and the y' vector is perpendicular to it. In that case, the x' component will have a magnitude equal to the magnitude of the original vector -- in other words, a non-zero value along a line parallel to the x' axis -- and a zero magnitude in the y' direction.
Depends on the situation. Vector A x Vector B= 0 when the sine of the angle between them is 0 Vector A . Vector B= 0 when the cosine of the angle between them is 0 Vector A + Vector B= 0 when Vectors A and B have equal magnitude but opposite direction.
A null vector does not have a direction but still satisfies the properties of a vector, namely having magnitude and following vector addition rules. It is often used to represent the absence of displacement or a zero result in a vector operation.
yes,if the components are making angle 0<=theta<=90 no ,the magnitude of vector can never attain a negative value |a|=square root of both components which always gives a positive value