no a plynomial can not have more zeros than the highest (degree) number of the function at leas that is what i was taught. double check the math.
A polynomial of degree ( n ) can have at most ( n ) real zeros. This is a consequence of the Fundamental Theorem of Algebra, which states that a polynomial of degree ( n ) has exactly ( n ) roots in the complex number system, counting multiplicities. Therefore, while all roots can be real, the maximum number of distinct real zeros a polynomial can possess is ( n ).
A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).
A polynomial of degree ( n ) can have at most ( n ) distinct zeros (roots) in the complex number system, according to the Fundamental Theorem of Algebra. These zeros may be real or complex, and they can also be repeated, meaning a polynomial can have fewer than ( n ) distinct zeros if some are counted multiple times (multiplicity). For example, a polynomial of degree 3 could have 3 distinct zeros, 2 distinct zeros (one with multiplicity 2), or 1 distinct zero (with multiplicity 3).
A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.
In the real domain, yes. In the complex domain, no.
3y2-5xyz yay i figured it out!!!!
The zeros of a polynomial represent the points at which the graph crosses (or touches) the x-axis.
A polynomial of degree ( n ) can have at most ( n ) real zeros. This is a consequence of the Fundamental Theorem of Algebra, which states that a polynomial of degree ( n ) has exactly ( n ) roots in the complex number system, counting multiplicities. Therefore, while all roots can be real, the maximum number of distinct real zeros a polynomial can possess is ( n ).
A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).
A polynomial of degree ( n ) can have at most ( n ) distinct zeros (roots) in the complex number system, according to the Fundamental Theorem of Algebra. These zeros may be real or complex, and they can also be repeated, meaning a polynomial can have fewer than ( n ) distinct zeros if some are counted multiple times (multiplicity). For example, a polynomial of degree 3 could have 3 distinct zeros, 2 distinct zeros (one with multiplicity 2), or 1 distinct zero (with multiplicity 3).
A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.
the zeros of a function is/are the values of the variables in the function that makes/make the function zero. for example: In f(x) = x2 -7x + 10, the zeros of the function are 2 and 5 because these will make the function zero.
In the real domain, yes. In the complex domain, no.
by synthetic division and quadratic equation
Find All Possible Roots/Zeros Using the Rational Roots Test f(x)=x^4-81 ... If a polynomial function has integer coefficients, then every rational zero will ...
A quadratic polynomial must have zeros, though they may be complex numbers.A quadratic polynomial with no real zeros is one whose discriminant b2-4ac is negative. Such a polynomial has no special name.
Yes - but only if the domain is restricted. Normally the domain is the whole of the real numbers and over that domain it must have at least one real zero.