answersLogoWhite

0

no a plynomial can not have more zeros than the highest (degree) number of the function at leas that is what i was taught. double check the math.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What is the LARGEST number of real zeros a polynomial with degree n can have?

A polynomial of degree ( n ) can have at most ( n ) real zeros. This is a consequence of the Fundamental Theorem of Algebra, which states that a polynomial of degree ( n ) has exactly ( n ) roots in the complex number system, counting multiplicities. Therefore, while all roots can be real, the maximum number of distinct real zeros a polynomial can possess is ( n ).


What is a polynomial function f of least degree that has rational coefficient a leading coefficient of 1 and the given zeros -7 -4?

A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).


How many zeros can be a polynomial of degree 'n' have?

A polynomial of degree ( n ) can have at most ( n ) distinct zeros (roots) in the complex number system, according to the Fundamental Theorem of Algebra. These zeros may be real or complex, and they can also be repeated, meaning a polynomial can have fewer than ( n ) distinct zeros if some are counted multiple times (multiplicity). For example, a polynomial of degree 3 could have 3 distinct zeros, 2 distinct zeros (one with multiplicity 2), or 1 distinct zero (with multiplicity 3).


What do you know about the most possible number of zeros for a polynomial?

A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.


Is it possible that the polynomial function doesn't have zeros?

In the real domain, yes. In the complex domain, no.

Related Questions

If you are asked to write a polynomial function of least degree with real coefficients and with zeros of 2 and i square roots of seven what would be the degree of the polynomial also wright equation?

3y2-5xyz yay i figured it out!!!!


What do the zeros of a polynomial function represent on a graph?

The zeros of a polynomial represent the points at which the graph crosses (or touches) the x-axis.


What is the LARGEST number of real zeros a polynomial with degree n can have?

A polynomial of degree ( n ) can have at most ( n ) real zeros. This is a consequence of the Fundamental Theorem of Algebra, which states that a polynomial of degree ( n ) has exactly ( n ) roots in the complex number system, counting multiplicities. Therefore, while all roots can be real, the maximum number of distinct real zeros a polynomial can possess is ( n ).


What is a polynomial function f of least degree that has rational coefficient a leading coefficient of 1 and the given zeros -7 -4?

A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).


How many zeros can be a polynomial of degree 'n' have?

A polynomial of degree ( n ) can have at most ( n ) distinct zeros (roots) in the complex number system, according to the Fundamental Theorem of Algebra. These zeros may be real or complex, and they can also be repeated, meaning a polynomial can have fewer than ( n ) distinct zeros if some are counted multiple times (multiplicity). For example, a polynomial of degree 3 could have 3 distinct zeros, 2 distinct zeros (one with multiplicity 2), or 1 distinct zero (with multiplicity 3).


What do you know about the most possible number of zeros for a polynomial?

A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.


What are the zeros of a polynomial function?

the zeros of a function is/are the values of the variables in the function that makes/make the function zero. for example: In f(x) = x2 -7x + 10, the zeros of the function are 2 and 5 because these will make the function zero.


Is it possible that the polynomial function doesn't have zeros?

In the real domain, yes. In the complex domain, no.


How do you find the zeros of any given polynomial function?

by synthetic division and quadratic equation


what are all of the zeros of this polynomial function f(a)=a^4-81?

Find All Possible Roots/Zeros Using the Rational Roots Test f(x)=x^4-81 ... If a polynomial function has integer coefficients, then every rational zero will ...


What is a quadratic polynomial which has no zeros?

A quadratic polynomial must have zeros, though they may be complex numbers.A quadratic polynomial with no real zeros is one whose discriminant b2-4ac is negative. Such a polynomial has no special name.


Is it possible for a polynomial function of degree 3 to have no real zeros?

Yes - but only if the domain is restricted. Normally the domain is the whole of the real numbers and over that domain it must have at least one real zero.