no a plynomial can not have more zeros than the highest (degree) number of the function at leas that is what i was taught. double check the math.
A polynomial of degree ( n ) can have at most ( n ) real zeros. This is a consequence of the Fundamental Theorem of Algebra, which states that a polynomial of degree ( n ) has exactly ( n ) roots in the complex number system, counting multiplicities. Therefore, while all roots can be real, the maximum number of distinct real zeros a polynomial can possess is ( n ).
A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).
A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.
In the real domain, yes. In the complex domain, no.
A quadratic polynomial must have zeros, though they may be complex numbers.A quadratic polynomial with no real zeros is one whose discriminant b2-4ac is negative. Such a polynomial has no special name.
3y2-5xyz yay i figured it out!!!!
The zeros of a polynomial represent the points at which the graph crosses (or touches) the x-axis.
A polynomial of degree ( n ) can have at most ( n ) real zeros. This is a consequence of the Fundamental Theorem of Algebra, which states that a polynomial of degree ( n ) has exactly ( n ) roots in the complex number system, counting multiplicities. Therefore, while all roots can be real, the maximum number of distinct real zeros a polynomial can possess is ( n ).
A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).
A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.A polynomial can have as many 0s as its order - the power of the highest term.
the zeros of a function is/are the values of the variables in the function that makes/make the function zero. for example: In f(x) = x2 -7x + 10, the zeros of the function are 2 and 5 because these will make the function zero.
In the real domain, yes. In the complex domain, no.
by synthetic division and quadratic equation
Find All Possible Roots/Zeros Using the Rational Roots Test f(x)=x^4-81 ... If a polynomial function has integer coefficients, then every rational zero will ...
A quadratic polynomial must have zeros, though they may be complex numbers.A quadratic polynomial with no real zeros is one whose discriminant b2-4ac is negative. Such a polynomial has no special name.
Yes - but only if the domain is restricted. Normally the domain is the whole of the real numbers and over that domain it must have at least one real zero.
The remainder theorem states that if you divide a polynomial function by one of it's linier factors it's degree will be decreased by one. This theorem is often used to find the imaginary zeros of polynomial functions by reducing them to quadratics at which point they can be solved by using the quadratic formula.